Skip to main content
Log in

Scattering of electrons and positrons from argon and krypton in the GUP framework

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the scattering of electrons and positrons by argon and krypton atoms considering a generalized uncertainty principle (GUP). To proceed, we first prove the modified non-relativistic wave equation due to the minimal length in the GUP framework and then determine the wave function of incident particles applying a scattering potential including the static and the energy-dependent correlation–polarization contributions. Finally, we compute the transmission and reflection probabilities from potential barrier. It will be shown that some exotic phenomena occur in this framework which cannot be justified by the ordinary quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J R Danielson and D H E Dubin Reviews of Modern Physics 87 247 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  2. B Franke Eur. Phys. J. D 71 1 (2017).

    Article  Google Scholar 

  3. J Vahedi, K Nozari and P Pedram Gravit Cosmol 18 211 (2012).

    Article  ADS  Google Scholar 

  4. J Vahedi and K Nozari Acta Physica Polonica A 122 38 (2012).

    Article  ADS  Google Scholar 

  5. P Pedram Physical Review D 85 024016 (2012).

    Article  ADS  Google Scholar 

  6. M Asghari, P Pedram and K Nozari Physics Letters B 725 451 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  7. A Kempf, G Mangano and R B Mann Physical Review D 52 1108 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. S Das and E C Vagenas Canadian Journal of Physics 87 233 (2009).

    Article  ADS  Google Scholar 

  9. S Das and E C Vagenas Physical Review Letters 101 221301 (2008).

    Article  ADS  Google Scholar 

  10. K Jahankohan, H Hassanabadi and S Zarrinkamar Modern Physics Letters A 30 1550173 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. A Armat and S Mohammad Moosavi Nejad Modern Physics Letters A 33 1852231 (2018).

    Article  Google Scholar 

  12. K E Thylwe and H J Korsch J Phy A: Math Gen 34 3497 (2001).

    Article  ADS  Google Scholar 

  13. H J Korsch, H Laurent and R Mohlenkamp J Phys B: At Mol Opt 14 4213 (1981).

    Article  ADS  Google Scholar 

  14. D D Reid and J M Wadehra J Phys B: At, Mol Opt Phys 47 225211 (2014).

    Article  ADS  Google Scholar 

  15. D D Reid and J M Wadehra Physical Review A 50 4859 (1994).

    Article  ADS  Google Scholar 

  16. S H Dong and M Lozada-Cassou Physica Scripta 74 285 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  17. S Dong, S H Dong, H Bahlouli and V B Bezerra International Journal of Modern Physics E 20 55 (2011).

    Article  ADS  Google Scholar 

  18. A S De Castro, A Armat and H Hassanabadi Eur. Phys. J. Plus 129 10 1–7 (2014).

    Article  Google Scholar 

  19. P Pedram Europhysics Letters 89 50008 (2010).

    Article  ADS  Google Scholar 

  20. P Wang, H Yang and X Zhang JHEP 8 43 (2010).

    Article  ADS  Google Scholar 

  21. F Scardigli Physics Letters B 452 39 (1999).

    Article  ADS  Google Scholar 

  22. S Mohammad Moosavi Nejad and Mahdi Delpasand Int. J. Mod. Phys. A 30 1550179 (2015).

    Article  Google Scholar 

  23. S Mohammad Moosavi Nejad Eur. Phys. J. A 52 127 (2016).

    Article  ADS  Google Scholar 

  24. S Mohammad Moosavi Nejad and Mahboobe Balali Eur. Phys. J. C 76 173 (2016).

    Article  ADS  Google Scholar 

  25. S Mohammad Moosavi Nejad and Mahboobe Balali Phys. Rev. D 90 114017 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Armat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the wave function \(\phi (x)\) satisfying the boundary conditions (4) and (5) is constructed from the particular amplitude-phase solutions discussed in Sect. 2. For the left side of the barrier, the solution \(\phi_{L}^{ - } (x)\) can be written as

$$\lim_{x \to - \infty } \phi_{L}^{ - } \approx \Omega_{L} (x)e^{{i( - S_{L} x + \delta_{L} )}}$$
(26)

where \(\delta_{{\text{L}}} = - \lim_{x \to - \infty } (U_{{\text{L}}} - S_{{\text{L}}} x)\) and \(\Omega_{{\text{L}}} ( - \infty ) = 1/\sqrt {S_{{\text{L}}} }\).

Using the matrix (8), one also has

$$\lim_{x \to + \infty } \phi_{R}^{ \pm } (x) \approx \Omega_{R} (x){\text{e}}^{{ \pm i(S_{R} x + \delta_{R} )}}$$
(27)

where \(\delta_{R} = \lim_{x \to \infty } (U_{R} - S_{R} x)\) and \(\Omega_{R} (\infty ) = 1/\sqrt {S_{R} }\).

According to the matrix (8) and the relations (26) and (27), one obtains

$$\begin{aligned} \phi _{{\text{L}}}^{ - } (x) \approx & \frac{{\omega _{2} - i\omega _{0} }}{{2\sqrt {S_{{\text{R}}} } }}\text{e} ^{{ + i(S_{{\text{R}}} x + \delta _{{\text{R}}} )}} \\ & + \frac{{\omega _{1} + i\omega _{0} }}{{2\sqrt {S_{{\text{R}}} } }}\text{e} ^{{ - i(S_{{\text{R}}} x + \delta _{{\text{R}}} )}} ,\quad x \to + \infty \\ \end{aligned}$$
(28)

Normalizing (28) according to Eq. (5), for the transmission and reflection amplitudes, one finds the following formulae

$$\begin{gathered} t = 2\left( {i\omega_{0} + \omega_{1} } \right)^{ - 1} {\text{Exp}}\left[ {i\left( {\delta_{{\text{L}}} + \delta_{{\text{L}}} } \right)} \right] \hfill \\ r = \left( {\omega_{2} - i\omega_{0} } \right)\left( {i\omega_{0} + \omega_{1} } \right)^{ - 1} {\text{Exp}}[2i\delta_{{\text{R}}} ]. \hfill \\ \end{gathered}$$
(29)

where the phases \(\delta_{{\text{R}}}\) and \(\delta_{{\text{L}}}\) are real. According to the definition of the T-coefficient and R-coefficient, one has

$$\begin{gathered} T = |t|^{2} = 4\left( {\omega_{0}^{2} + \omega_{1}^{2} } \right)^{ - 1} \hfill \\ R = |r|^{2} = \left( {\omega_{0}^{2} + \omega_{2}^{2} } \right)\left( {\omega_{0}^{2} + \omega_{1}^{2} } \right)^{ - 1} . \hfill \\ \end{gathered}$$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi Nejad, S., Armat, A. Scattering of electrons and positrons from argon and krypton in the GUP framework. Indian J Phys 96, 1433–1441 (2022). https://doi.org/10.1007/s12648-021-02062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02062-9

Keywords

Navigation