Skip to main content
Log in

Rydberg quantum computation with nuclear spins in two-electron neutral atoms

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states ∣0〉 and ∣1〉 are excited to Rydberg states ∣r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state ∣1〉 can be fully excited to the Rydberg state while ∣0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000

    MATH  Google Scholar 

  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature (London) 464, 45 (2010)

    Article  ADS  Google Scholar 

  3. R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  4. J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  5. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  6. D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, Quantum Spintronics: Engineering and manipulating atom-like spins in semiconductors, Science 339, 1174 (2013)

    Article  ADS  Google Scholar 

  7. M. H. Devoret and R. J. Schoelkopf, Superconductingcircuits for quantum information: An outlook, Science 339, 1169 (2013)

    Article  ADS  Google Scholar 

  8. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  9. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  10. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  11. M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J. Phys. B 49, 202001 (2016)

    Article  ADS  Google Scholar 

  12. D. S. Weiss and M. Saffman, Quantum computing with-neutral atoms, Phys. Today 70, 44 (2017)

    Article  Google Scholar 

  13. C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B: At. Mol.Opt. Phys. 53, 012002 (2020)

    Article  ADS  Google Scholar 

  14. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  15. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  16. X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82, 030306(R) (2010)

    Article  ADS  Google Scholar 

  17. K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array of neutral-atom qubits, Phys. Rev. A 92, 022336 (2015)

    Article  ADS  Google Scholar 

  18. Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nat. Phys. 12, 71 (2016)

    Article  Google Scholar 

  19. Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade, Phys. Rev. Lett. 119, 160502 (2017)

    Article  ADS  Google Scholar 

  20. H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg atom qubits, Phys. Rev. Lett. 121, 123603 (2018)

    Article  ADS  Google Scholar 

  21. C. J. Picken, R. Legaie, K. McDonnell, and J. D. Pritchard, Entanglement of neutral-atom qubits with long ground-Rydberg coherence times, Quant. Sci. Technol. 4, 015011 (2019)

    Article  ADS  Google Scholar 

  22. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of high-fidelity multi-qubit gates with neutral atoms, Phys. Rev. Lett. 123, 170503 (2019)

    Article  ADS  Google Scholar 

  23. T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg mediated entanglement in a two-dimensional neutral atom qubit array, Phys. Rev. Lett. 123, 230501 (2019)

    Article  ADS  Google Scholar 

  24. H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124, 33603 (2019)

    Article  Google Scholar 

  25. I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020)

    Article  Google Scholar 

  26. D. Crow, R. Joynt, and M. Saffman, Improved error thresholds for measurement-free error correction, Phys. Rev. Lett. 117, 130503 (2016)

    Article  ADS  Google Scholar 

  27. R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, An ytterbium quantum gas microscope with narrow-line laser cooling, New J. Phys. 18, 023016 (2016)

    Article  ADS  Google Scholar 

  28. S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson, Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array, Phys. Rev. Lett. 122, 143002 (2019)

    Article  ADS  Google Scholar 

  29. A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, Alkaline-earth atoms in optical tweezers, Phys. Rev. X 8, 41055 (2018)

    Google Scholar 

  30. J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays, Phys. Rev. Lett. 122, 173201 (2019)

    Article  ADS  Google Scholar 

  31. M. A. Norcia, A. W. Young, and A. M. Kaufman, Microscopic control and detection of ultracold strontium in optical-tweezer arrays, Phys. Rev. X 8, 041054 (2018)

    Google Scholar 

  32. I. Reichenbach and I. H. Deutsch, Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms, Phys. Rev. Lett. 99, 123001 (2007)

    Article  ADS  Google Scholar 

  33. J. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. Burgers, and J. Thompson, Trapped arrays of alkaline earth Rydberg atoms in optical tweezers, arXiv: 1912.08754 [quant-ph] (2019)

  34. X.-F. Shi, Rydberg quantum gates free from blockade error, Phys. Rev. Appl. 7, 064017 (2017)

    Article  ADS  Google Scholar 

  35. K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  36. P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79, 53 (2007)

    Article  ADS  Google Scholar 

  37. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89, 015006 (2017)

    Article  ADS  Google Scholar 

  38. D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100, 170504 (2008)

    Article  ADS  Google Scholar 

  39. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, Mesoscopic Rydberg gate based on electromagnetically induced transparency, Phys. Rev. Lett. 102, 170502 (2009)

    Article  ADS  Google Scholar 

  40. M. H. Goerz, T. Calarco, and C. P. Koch, The quantumspeed limit of optimal controlled phase gates for trappedneutral atoms, J. Phys. B 44 (2011)

  41. I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. MacCormick, and S. Bergamini, Deterministic single-atom excitation via adiabatic passage and Rydberg blockade, Phy. Rev. A 84, 023413 (2011)

    Article  ADS  Google Scholar 

  42. M. M. Müller, H. R. Haakh, T. Calarco, C. P. Koch, and C. Henkel, Prospects for fast Rydberg gates on anatom chip, Quant. Inf. Proc. 10, 771 (2011)

    Article  Google Scholar 

  43. T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann, A. J. Landahl, and I. H. Deutsch, Adiabatic quantum computation with Rydberg-dressed atoms, Phy. Rev. A 87, 052314 (2013)

    Article  ADS  Google Scholar 

  44. D. Petrosyan and K. Mølmer, Stimulated adiabatic-passage in a dissipative ensemble ofatoms with strong Rydberg-state interactions, Phys. Rev. A 87, 033416 (2013)

    Article  ADS  Google Scholar 

  45. I. I. Beterov, M. Saffman, E. A. Yakshina, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, Quantum gates in mesoscopic atomic ensembles-based on adiabatic passage and Rydberg blockade, Phys. Rev. A 88, 010303(R) (2013)

    Article  ADS  Google Scholar 

  46. M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89, 032334 (2014)

    Article  ADS  Google Scholar 

  47. M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch, and K. B. Whaley, Robustness of high-fidelity Rydberg gates with single-site addressability, Phys. Rev. A 90, 032329 (2014)

    Article  ADS  Google Scholar 

  48. I. I. Beterov, M. Saffman, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. W. Mansell, C. Maccormick, S. Bergamini, and M. P. Fedoruk, Coherent control of mesoscopic atomic ensembles for quantum information, Laser Phys. 24, 074013 (2014)

    Article  ADS  Google Scholar 

  49. T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logicin neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91, 012337 (2015)

    Article  ADS  Google Scholar 

  50. I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, G. N. Hamzina, and I. I. Ryabtsev, Simulated quantum process tomography of quantum gates with Rydberg superatoms, J. Phys. B 49, 114007 (2016)

    Article  ADS  Google Scholar 

  51. L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, High-fidelity Rydberg-blockade entangling gate using-shaped, analytic pulses, Phys. Rev. A 94, 032306 (2016)

    Article  ADS  Google Scholar 

  52. H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phy. Rev. A 96, 022321 (2017)

    Article  ADS  Google Scholar 

  53. D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A 96, 042306 (2017)

    Article  ADS  Google Scholar 

  54. Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97, 042336 (2018)

    Article  ADS  Google Scholar 

  55. A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science 365, 570 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  56. K.-Y. Liao, X.-H. Lu, Z. Li, and Y.-X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801 (2019)

    Article  ADS  Google Scholar 

  57. Y. Sun, P. Xu, P.-X. Chen, and L. Liu, Controlled phase gate protocol for neutral atoms via off-resonant, Phys. Rev. Appl. 13, 024059 (2020)

    Article  ADS  Google Scholar 

  58. X.-F. Shi, Single-site Rydberg addressing in 3D atomicarrays for quantum computing with neutral atoms, J. Phys. B 53, 054002 (2020)

    Article  ADS  Google Scholar 

  59. A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Molmer-Sorenson gate for neutralatoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101, 030301(R) (2020)

    Article  ADS  Google Scholar 

  60. I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, M. Saffman, and S. Bergamini, Application of adiabatic passage in Rydberg atomic ensembles for quantum information processing, J. Phys. B 53, 182001 (2020)

    Article  ADS  Google Scholar 

  61. M. Saffman, I. I. Beterov, A. Dalal, E. J. Paez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses control target, Phys. Rev. A 101, 62309 (2020)

    Article  ADS  Google Scholar 

  62. Y.-H. Kang, Z.-C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102, 022617 (2020)

    Article  ADS  Google Scholar 

  63. C.-Y. Guo, L. L. Yan, S. Zhang, S.-L. Su, and W. Li, Optimized geometric quantum computation with mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102, 042607 (2020)

    Article  ADS  Google Scholar 

  64. M. Khazali and K. Molmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10, 21054 (2020)

    Google Scholar 

  65. A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, Two-atom Rydberg blockade using direct 6S to nP excitation. Phys. Rev. A 89, 033416 (2014)

    Article  ADS  Google Scholar 

  66. R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J. M. Raimond, S. Gleyzes, and M. Brune, Preparation of long-lived, non-autoionizing circular Rydberg states of strontium, Phys. Rev. Lett. 125, 263001 (2020)

    Article  ADS  Google Scholar 

  67. D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett. 82, 1975 (1999)

    Article  ADS  Google Scholar 

  68. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps, Phys. Rev. A 61, 022304 (2000)

    Article  ADS  Google Scholar 

  69. D. Hayes, P. S. Julienne, and I. H. Deutsch, Quantum logic via the exchange blockade in ultracold collisions, Phys. Rev. Lett. 98, 070501 (2007)

    Article  ADS  Google Scholar 

  70. J. P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, and O. Painter, Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics, Phys. Rev. Appl. 11, 034044 (2019)

    Article  ADS  Google Scholar 

  71. A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum computing with alkaline-earth-metal atoms, Phys. Rev. Lett. 101, 170504 (2008)

    Article  ADS  Google Scholar 

  72. G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spinexchange dynamics, Phys. Rev. Lett. 113, 120402 (2014)

    Article  ADS  Google Scholar 

  73. F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spin-exchange interactions with ultracold SU (N)-symmetric fermions, Nat. Phys. 10, 779 (2014)

    Article  Google Scholar 

  74. A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, Entangling two transportable neutral atoms via local spin exchange, Nature 527, 208 (2015)

    Article  ADS  Google Scholar 

  75. A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, Alkaline earth-metal atoms as few-qubit quantum registers, Phys. Rev. Lett. 102, 110503 (2009)

    Article  ADS  Google Scholar 

  76. A. J. Daley, J. Ye, and P. Zoller, State-dependent lattices for quantum computing with alkaline-earth-metal atoms, Eur. Phys. J. D 65, 207 (2011)

    Article  ADS  Google Scholar 

  77. A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quant. Inf. Proc. 10, 865 (2011)

    Article  Google Scholar 

  78. G. Pagano, F. Scazza, and M. FossFeig, Fast and scalable quantum information processing with two electron atoms in optical tweezer arrays, Adv. Quant. Technol. 2, 1970021 (2019)

    Article  Google Scholar 

  79. J. H. M. Jensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson, Time-optimal control of collisional SWAP gates in ultracold atomic systems, Phys. Rev. A 100, 052314 (2019)

    Article  ADS  Google Scholar 

  80. R. Stock, N. S. Babcock, M. G. Raizen, and B. C. Sanders, Entanglement of group-II-like atoms with fast measurement for quantum information processing, Phys. Rev. 78, 022301 (2008)

    Article  Google Scholar 

  81. M. Saffman and T. G. Walker, Analysis of a quantum logic device based on dipole-dipole interactions of optical-lytrapped Rydberg atoms, Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  82. M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower, and T. G. Walker, Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms, J. Phys.: Conf. Ser. 264, 012023 (2011)

    Google Scholar 

  83. S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility of an optical clock using the 61S0 → 63P o0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A 69, 021403(R) (2004)

    Article  ADS  Google Scholar 

  84. B. Budick and J. Snir, Hyperfine structure of the 6s6p1P1 level of the stable ytterbium isotopes, Phys. Rev. 178, 18 (1969)

    Article  ADS  Google Scholar 

  85. R. W. Berends and L. Maleki, Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium, J. Opt. Soc. Am. B 9, 332 (1992)

    Article  ADS  Google Scholar 

  86. K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, Isotopeshifts and hyperfine splittings of the 3988-nm Yb I line, J. Opt. Soc. Am. B 10, 789 (1993)

    Article  ADS  Google Scholar 

  87. R. Zinkstok, E. J. Van Duijn, S. Witte, and W. Hogervorst, Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation, J. Phys. B 35, 2693 (2002)

    Article  ADS  Google Scholar 

  88. P. E. Atkinson, J. S. Schelfhout, and J. J. McFerran, Hyperfine constants and line separationsfor the 1S03P1 intercombination linein neutral ytterbium with sub-Doppler resolution, Phys. Rev. A 100, 042505 (2019)

    Article  ADS  Google Scholar 

  89. A.-M. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4-nm 6s–6p1/2 resonance line of singly ionized ytterbium, Phys. Rev. A 49, 3351 (1994)

    Article  ADS  Google Scholar 

  90. K. B. Blagoev and V. A. Komarovskii, Lifetimes of levels of neutral and singly ionized lanthanide atoms, At. Data Nucl. Data Tables 56, 1 (1994)

    Article  ADS  Google Scholar 

  91. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A 76 (2007)

  92. B. Budick and J. Snir, Hyperfine-structure anomalies of stable ytterbium isotopes, Phys. Rev. A 1, 545 (1970)

    Article  ADS  Google Scholar 

  93. K. Pandey, A. K. Singh, P. V. Kumar, M. V. Suryanarayana, and V. Natarajan, Isotope shifts and hyperfine structure in the 555.8-nm 1S03P1 line of Yb, Phys. Rev. A 80, 022518 (2009)

    Article  ADS  Google Scholar 

  94. H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Isolated core excitation of high-orbital quantum-number Rydberg states of ytterbium, Phys. Rev. A 103, 022806 (2021)

    Article  ADS  Google Scholar 

  95. G. Higgins, W. Li, F. Pokorny, C. Zhang, F. Kress, C. Maier, J. Haag, Q. Bodart, I. Lesanovsky, and M. Hennrich, A single strontium Rydberg ion confinedin a Paul trap, Phys. Rev. X 7, 021038 (2017)

    Google Scholar 

  96. G. Higgins, F. Pokorny, C. Zhang, Q. Bodart, and M. Hennrich, Coherent control of a single trapped Rydbergion, Phys. Rev. Lett. 119, 220501 (2017)

    Article  ADS  Google Scholar 

  97. C. Zhang, F. Pokorny, W. Li, G. Higgins, A. Pöschl, I. Lesanovsky, and M. Hennrich, Submicrosecond entangling gate between trapped ions via Rydberg interaction, Nature 580, 345 (2020)

    Article  ADS  Google Scholar 

  98. X.-F. Shi, Fast, Accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11, 044035 (2019)

    Article  ADS  Google Scholar 

  99. X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and M. Saffman, Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography, Phys. Rev. A 85, 042310 (2012)

    Article  ADS  Google Scholar 

  100. X.-F. Shi, Accurate quantum logic gates by spin echo in Rydberg atoms, Phys. Rev. Appl. 10, 034006 (2018)

    Article  ADS  Google Scholar 

  101. L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367, 47 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  102. E. J. Robertson, N. ŠˇSibalić, R. M. Potvliege, and M. P. A. Jones, ARC 3.0: An expanded Python toolbox for atomic physics, Comp. Phys. Comm. 261, 107814 (2021)

    Article  MathSciNet  Google Scholar 

  103. H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz, and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel quantum defect theory analysis, Phys. Rev. A 98, 062506 (2018)

    Article  ADS  Google Scholar 

  104. B. Kaulakys, Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B 28, 4963 (1995)

    Article  ADS  Google Scholar 

  105. X.-F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90, 062327 (2014)

    Article  ADS  Google Scholar 

  106. X.-F. Shi, Transition slow-down by Rydberg interactionof neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14, 054058 (2020)

    Article  ADS  Google Scholar 

  107. J. S. Ross and K. Murakawa, Nuclear quadrupole moment of Yb173, Phys. Rev. 128, 1159 (1962)

    Article  ADS  Google Scholar 

  108. M. Aymar, Multichannel-quantum-defect theory wave-functions of Ba tested or improved by laser measurements, J. Opt. Soc. Am. B 1, 239 (1984)

    Article  ADS  Google Scholar 

  109. L. Xingye, L. Wanfa, J. Zhankui, and J. Larsson, Test of the multichannel quantum-defect wave function by a Landé-factor (gJ) investigation in the perturbed 6snp1,3P1 sequencesof Yb I, Phys. Rev. A 49, 4443 (1994)

    Article  ADS  Google Scholar 

  110. T. Ido and H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime, Phys. Rev. Lett. 91, 053001 (2003)

    Article  ADS  Google Scholar 

  111. S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S. Yoshida, S. Nagele, and J. Burgdörfer, Production of very-high-n strontium Rydberg atoms, Phys. Rev. A 88, 043430 (2013)

    Article  ADS  Google Scholar 

  112. C. Gaul, B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, and T. Pohl, Resonant Rydberg dressing of alkaline-earth atoms via electromagnetically induced transparency, Phys. Rev. Lett. 116, 243001 (2016)

    Article  ADS  Google Scholar 

  113. M. N. Winchester, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, Magnetically Induced optical transparency on a forbidden transition in strontium for cavity-enhanced spectroscopy, Phys. Rev. Lett. 118, 263601 (2017)

    Article  ADS  Google Scholar 

  114. R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Spectroscopy of Sr87 triplet Rydberg states, Phys. Rev. A 98, 042505 (2018)

    Article  ADS  Google Scholar 

  115. H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, Oscillator strengths and radiative branching ratios in atomic Sr, Phys. Rev. A 46, 1248 (1992)

    Article  ADS  Google Scholar 

  116. C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Longrange Rydberg-Rydberg interactions in calcium, strontium and ytterbium, J. Phys. B: At. Mol. Opt. Phys. 45, 135004 (2012)

    Article  ADS  Google Scholar 

  117. C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Multichannel quantum defect theory of strontium bound Rydberg states, J. Phys. B: At. Mol. Opt. Phys. 47, 155001 (2014)

    Article  ADS  Google Scholar 

  118. F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgdörfer, Recent advances in Rydberg physics using alkalineearth atoms, J. Phys. B 49, 112003 (2016)

    Article  ADS  Google Scholar 

  119. F. Robicheaux, Calculations of long range interactions for 87Sr Rydberg states, J. Phys. B 52, 244001 (2019)

    Article  ADS  Google Scholar 

  120. R. Mukherjee, J. Millen, R. Nath, M. P. Jones, and T. Pohl, Many-body physics with alkaline-earth Rydberg lattices, J. Phys. B 44, 184010 (2011)

    Article  ADS  Google Scholar 

  121. X. Zhang, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Rydberg blockade effects at n ∼ 300 instrontium, Phys. Rev. A 92, 051402(R) (2015)

    Article  ADS  Google Scholar 

  122. B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, Rydberg-blockade effectsin Autler-Townes spectra of ultracold strontium, Phys. Rev. A 93, 022709 (2016)

    Article  ADS  Google Scholar 

  123. S. Yoshida, J. Burgdörfer, X. Zhang, and F. B. Dunning, Rydberg blockade in a hot atomic beam, Phy. Rev. A 95, 042705 (2017)

    Article  ADS  Google Scholar 

  124. J. E. Sansonetti and G. Nave, Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I), J. Phys. Chem. Ref. Data 39, 033103 (2010)

    Article  ADS  Google Scholar 

  125. R. J. Fonck, F. L. Roesler, D. H. Tracy, K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Atomic diamagnetism and diamagnetically induced configuration mixing in laser-excited barium, Phys. Rev. Lett. 39, 1513 (1977)

    Article  ADS  Google Scholar 

  126. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98, 023002 (2007)

    Article  ADS  Google Scholar 

  127. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104, 013001 (2010)

    Article  ADS  Google Scholar 

  128. S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131, 53001 (2020)

    Article  ADS  Google Scholar 

  129. A. Lurio, M. Mandel, and R. Novick, Second-order hyperfineand Zeeman corrections for an (sl) configuration, Phys. Rev. 126, 1758 (1962)

    Article  ADS  Google Scholar 

  130. D. W. Fang, W. J. Xie, Y. Zhang, X. Hu, and Y. Y. Liu, Radiative lifetimes of Rydberg state of ytterbium, J. Quant. Spectrosc. Ra. 69, 469 (2001)

    Article  ADS  Google Scholar 

  131. J. P. Covey, A. Sipahigil, and M. Saffman, Microwavetooptical conversion via four-wave mixing in a cold ytterbium ensemble, Phys. Rev. A 100, 012307 (2019)

    Article  ADS  Google Scholar 

  132. D. A. Steck, Quantum and Atom Optics, http://steck.us/teaching

  133. T. G. Walker and M. Saffman, Consequences of Zeemandegeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77, 032723 (2008)

    Article  ADS  Google Scholar 

  134. T. Zelevinsky, M. M. Boyd, A. D. Ludlow, T. Ido, J. Ye, R. Ciury lo, P. Naidon, and P. S. Julienne, Narrow line photo association in an optical lattice, Phys. Rev. Lett. 96, 203201 (2006)

    Article  ADS  Google Scholar 

  135. J. Millen, G. Lochead, and M. P. A. Jones, Two electron excitation of an interacting cold Rydberg gas, Phys. Rev. Lett. 105, 213004 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Shi.

Additional information

arXiv: 2103.13847. Special Topic: Trapped Atoms and Ions for Quantum Science (Eds. Le Luo, Kenji Toyoda, Kihwan Kim, Jaewook Ahn & Dzmitry Matsukevich). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1069-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XF. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys. 16, 52501 (2021). https://doi.org/10.1007/s11467-021-1069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1069-6

Keywords

Navigation