Skip to main content
Log in

Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance people’s ability to manipulate heat flux at will. However, there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches. In the current review, we focus on recent progress in an important part of nonlinear heat transfer, i.e., tailoring nonlinear thermal devices and metamaterials under the Fourier law, especially with temperature-dependent thermal conductivities. We will present the basic designing techniques including solving the equation directly and the transformation theory. Tuning nonlinearity coming from multi-physical effects, and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included. Based on these theories, researchers have successfully designed various functional materials and devices such as the thermal diodes, thermal transistors, thermal memory elements, energy-free thermostats, and intelligent thermal materials, and some of them have also been realized in experiments. Further, these phenomenological works can provide a feasible route for the development of nonlinear thermotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd Ed., CRC Press, Boca Raton, 2018

    Book  MATH  Google Scholar 

  2. W. A. Strauss, Partial Differential Equations: An introduction, 2nd Ed., Wiley, Hoboken, 2008

    MATH  Google Scholar 

  3. N. Bloembergen, Nonlinear Optics, Benjamin, New York, 1964

    MATH  Google Scholar 

  4. N. M. Krylov and N. N. Bogolyubov, Introduction to Non-Linear Mechanics, Princeton University Press, Princeton, 1947

    Google Scholar 

  5. R. T. Beyer, Nonlinear Acoustics, Naval Ship Systems Command, Washington, D.C., 1974

  6. D. L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, Cambridge, 2010

    Book  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Butterworth-Heinemann, Oxford, 1980

    Google Scholar 

  8. L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Pergamon Press, Oxford, 1981

    Google Scholar 

  9. D. W. Snoke, Solid State Physics: Essential Concepts, 2nd Ed., Cambridge University Press, Cambridge, 2020

    Book  MATH  Google Scholar 

  10. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York, 2005

    Google Scholar 

  11. S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377(1), 1 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)

    Article  ADS  Google Scholar 

  13. X. Gu, Y. Wei, X. Yin, B. Li, and R. Yang, Colloquium: Phononic thermal properties of two-dimensional materials, Rev. Mod. Phys. 90(4), 041002 (2018)

    Article  ADS  Google Scholar 

  14. X. K. Chen and K. Q. Chen, Thermal transport of carbon nanomaterials, J. Phys.: Condens. Matter 32(15), 153002 (2020)

    ADS  Google Scholar 

  15. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860, 1 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Ford, The Fermi-Pasta-Ulam problem: Paradox turns discovery, Phys. Rep. 213(5), 271 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Phys. Rep. 306(1–2), 1 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  18. D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61(1), 41 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. B. Straughan, Heat Waves, Springer, New York, 2011

    Book  MATH  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed., Butterworth-Heinemann, Oxford, 1987

    Google Scholar 

  21. S. Buckley, Thermic diode solar panels for space heating, Sol. Energy 20(6), 495 (1978)

    Article  ADS  Google Scholar 

  22. C. Starr, The copper oxide rectifier, Physics 7(1), 15 (1936)

    Article  ADS  Google Scholar 

  23. N. A. Roberts and D. G. Walker, A review of thermal rectification observations and models in solid materials, Int. J. Therm. Sci. 50(5), 648 (2011)

    Article  Google Scholar 

  24. M. Terraneo, M. Peyrard, and G. Casati, Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier, Phys. Rev. Lett. 88(9), 094302 (2002)

    Article  ADS  Google Scholar 

  25. B. Li, L. Wang, and G. Casati, Thermal diode: Rectification of heat flux, Phys. Rev. Lett. 93(18), 184301 (2004)

    Article  ADS  Google Scholar 

  26. B. Li, J. Lan, and L. Wang, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett. 95(10), 104302 (2005)

    Article  ADS  Google Scholar 

  27. B. Li, L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor, Appl. Phys. Lett. 88(14), 143501 (2006)

    Article  ADS  Google Scholar 

  28. L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)

    Article  ADS  Google Scholar 

  29. L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)

    Article  ADS  Google Scholar 

  30. N. Li, P. Hänggi, and B. Li, Ratcheting heat flux against a thermal bias, EPL 84(4), 40009 (2008)

    Article  ADS  Google Scholar 

  31. Y. Ming, H. M. Li, and Z. J. Ding, Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling, Phys. Rev. E 93(3), 032127 (2016)

    Article  ADS  Google Scholar 

  32. Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)

    Article  ADS  Google Scholar 

  33. K. Xiong, J. Zhou, M. Tang, C. Zeng, and Z. Liu, Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts, Phys. Rev. E 98(6), 062144 (2018)

    Article  ADS  Google Scholar 

  34. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science 314(5802), 1121 (2006)

    Article  ADS  Google Scholar 

  35. D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett. 94(3), 034301 (2005)

    Article  ADS  Google Scholar 

  36. D. Segal, Single mode heat rectifier: Controlling energy flow between electronic conductors, Phys. Rev. Lett. 100(10), 105901 (2008)

    Article  ADS  Google Scholar 

  37. L. A. Wu and D. Segal, Sufficient conditions for thermal rectification in hybrid quantum structures, Phys. Rev. Lett. 102(9), 095503 (2009)

    Article  ADS  Google Scholar 

  38. D. Sánchez and R. López, Nonlinear phenomena in quantum thermoelectrics and heat, C. R. Phys. 17(10), 1060 (2016)

    Article  ADS  Google Scholar 

  39. R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, Quantum dot as thermal rectifier, New J. Phys. 10(8), 083016 (2008)

    Article  ADS  Google Scholar 

  40. J. H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon thermoelectric transistors and rectifiers, Phys. Rev. B 92(4), 045309 (2015)

    Article  ADS  Google Scholar 

  41. D. Segal and A. Nitzan, Heat rectification in molecular junctions, J. Chem. Phys. 122(19), 194704 (2005)

    Article  ADS  Google Scholar 

  42. D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B 73(20), 205415 (2006)

    Article  ADS  Google Scholar 

  43. G. T. Craven, D. He, and A. Nitzan, Electron-transferinduced thermal and thermoelectric rectification, Phys. Rev. Lett. 121(24), 247704 (2018)

    Article  ADS  Google Scholar 

  44. J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)

    Article  ADS  Google Scholar 

  45. A. Fornieri, M. J. Martínez-Pérez, and F. Giazotto, A normal metal tunnel-junction heat diode, Appl. Phys. Lett. 104(18), 183108 (2014)

    Article  ADS  Google Scholar 

  46. M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, Rectification of electronic heat current by a hybrid thermal diode, Nat. Nanotechnol. 10(4), 303 (2015)

    Article  ADS  Google Scholar 

  47. A. Fornieri and F. Giazotto, Towards phase-coherent caloritronics in superconducting circuits, Nat. Nanotechnol. 12(10), 944 (2017)

    Article  ADS  Google Scholar 

  48. M. J. Martínez-Pérez and F. Giazotto, Efficient phase-tunable Josephson thermal rectifier, Appl. Phys. Lett. 102(18), 182602 (2013)

    Article  ADS  Google Scholar 

  49. L. Bours, B. Sothmann, M. Carrega, E. Strambini, A. Braggio, E. M. Hankiewicz, L. W. Molenkamp, and F. Giazotto, Phase-tunable thermal rectification in the topological SQUIPT, Phys. Rev. Appl. 11(4), 044073 (2019)

    Article  ADS  Google Scholar 

  50. C. Guarcello, P. Solinas, A. Braggio, M. Di Ventra, and F. Giazotto, Josephson thermal memory, Phys. Rev. Appl. 9(1), 014021 (2018)

    Article  ADS  Google Scholar 

  51. C. Guarcello, P. Solinas, A. Braggio, and F. Giazotto, Solitonic Josephson thermal transport, Phys. Rev. Appl. 9(3), 034014 (2018)

    Article  MATH  ADS  Google Scholar 

  52. M. Maldovan, Sound and heat revolutions in phononics, Nature 503(7475), 209 (2013)

    Article  ADS  Google Scholar 

  53. Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Transforming heat transfer with thermal metamaterials and devices, arXiv: 2008.07964v1 (2020)

  54. J. Wang, G. Dai, and J. Huang, Thermal metamaterial: Fundamental, application, and outlook, iScience 23(10), 101637 (2020)

    Article  ADS  Google Scholar 

  55. J. C. Kim, Z. Ren, A. Yuksel, E. M. Dede, P. R. Bandaru, D. Oh, and J. Lee, Recent advances in thermal metamaterials and their future applications for electronics packaging, J. Electron. Packag. 143(1), 010801 (2021)

    Article  Google Scholar 

  56. N. I. Zhuludev and Y. S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11(11), 917 (2012)

    Article  ADS  Google Scholar 

  57. S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)

    Article  ADS  Google Scholar 

  58. C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)

    Article  ADS  Google Scholar 

  59. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Phys. Rev. Lett. 115(19), 195503 (2015)

    Article  ADS  Google Scholar 

  60. G. S. He, Nonlinear Optics and Photonics, Oxford University Press, Oxford, 2015

    Google Scholar 

  61. A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72(1), 016623 (2005)

    Article  ADS  Google Scholar 

  62. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)

    Article  ADS  Google Scholar 

  63. T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)

    Article  ADS  Google Scholar 

  64. T. Han, X. Bai, J. T. L. Thong, B. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)

    Article  Google Scholar 

  65. T. Han, P. Yang, Y. Li, D. Lei, B. Li, K. Hippalgaonkar, and C. W. Qiu, Full-parameter omnidirectional thermal metadevices of anisotropic geometry, Adv. Mater. 30(49), 1804019 (2018)

    Article  Google Scholar 

  66. C. Marucha, J. Mucha, and J. Rafałowicz, Heat flow rectification in inhomogeneous GaAs, Phys. Status Solidi 31(1), 269 (1975)

    Article  ADS  Google Scholar 

  67. A. Jeżowski and J. Rafałowicz, Heat flow asymmetry on a junction of quartz with graphite, Phys. Status Solidi 47(1), 229 (1978)

    Article  ADS  Google Scholar 

  68. B. Hu, D. He, L. Yang, and Y. Zhang, Thermal rectifying effect in macroscopic size, Phys. Rev. E 74(6), 060201 (2006)

    Article  ADS  Google Scholar 

  69. M. Peyrard, The design of a thermal rectifier, EPL 76(1), 49 (2006)

    Article  ADS  Google Scholar 

  70. D. B. Go and M. Sen, On the condition for thermal rectification using bulk materials, J. Heat Transfer 132(12), 124502 (2010)

    Article  Google Scholar 

  71. Y. Li, J. X. Li, M. H. Qi, C.-W. Qiu, and H. S. Chen, Diffusive nonreciprocity and thermal diode, Phys. Rev. B 103, 014307 (2021)

    Article  ADS  Google Scholar 

  72. C. Dames, Solid-state thermal rectification with existing bulk materials, J. Heat Transfer 131(6), 061301 (2009)

    Article  Google Scholar 

  73. Y. Yang, H. Chen, H. Wang, N. Li, and L. Zhang, Optimal thermal rectification of heterojunctions under Fourier law, Phys. Rev. E 98(4), 042131 (2018)

    Article  ADS  Google Scholar 

  74. W. Kobayashi, Thermal-rectification coefficients in solid-state thermal rectifiers, Phys. Rev. E 102(3), 032142 (2020)

    Article  ADS  Google Scholar 

  75. W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Appl. Phys. Lett. 95(17), 171905 (2009)

    Article  ADS  Google Scholar 

  76. D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Thermal rectification in bulk materials with asymmetric shape, Appl. Phys. Lett. 98(8), 081915 (2011)

    Article  ADS  Google Scholar 

  77. T. Takeuchi, H. Goto, R. Nakayama, Y. Terazawa, K. Ogawa, A. Yamamoto, T. Itoh, and M. Mikami, Improvement in rectification ratio of an Al-based bulk thermal rectifier working at high temperatures, J. Appl. Phys. 111(9), 093517 (2012)

    Article  ADS  Google Scholar 

  78. R. Nakayama and T. Takeuchi, Thermal rectification in bulk material through unusual behavior of electron thermal conductivity of Al-Cu-Fe icosahedral quasicrystal, J. Electron. Mater. 44(1), 356 (2015)

    Article  ADS  Google Scholar 

  79. T. Takeuchi, Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals, Sci. Technol. Adv. Mater. 15(6), 064801 (2014)

    Article  Google Scholar 

  80. K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman, F. Zhou, Y. Lv, S. Gao, and R. Zou, Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization, Adv. Funct. Mater. 30(8), 1904228 (2020)

    Article  Google Scholar 

  81. X. Chen, Z. Tang, H. Gao, S. Chen, and G. Wang, Phase change materials for electro-thermal conversion and storage: From fundamental understanding to engineering design, iScience 23(6), 101208 (2020)

    Article  ADS  Google Scholar 

  82. Y. Zhou, S. Wu, Y. Ma, H. Zhang, X. Zeng, F. Wu, F. Liu, J. E. Ryu, and Z. Guo, Recent advances in organic/composite phase change materials for energy storage, ES Energy Environ. 9, 28 (2020)

    Google Scholar 

  83. W. Kobayashi, D. Sawaki, T. Omura, T. Katsufuji, Y. Moritomo, and I. Terasaki, Thermal rectification in the vicinity of a structural phase transition, Appl. Phys. Express 5(2), 027302 (2012)

    Article  ADS  Google Scholar 

  84. A. L. Cottrill and M. S. Strano, Analysis of thermal diodes enabled by junctions of phase change materials, Adv. Energy Mater. 5(23), 1500921 (2015)

    Article  Google Scholar 

  85. J. Ordonez-Miranda, J. M. Hill, K. Joulain, Y. Ezzahri, and J. Drevillon, Conductive thermal diode based on the thermal hysteresis of VO2 and nitinol, J. Appl. Phys. 123(8), 085102 (2018)

    Article  ADS  Google Scholar 

  86. K. I. Garcia-Garcia and J. Alvarez-Quintana, Thermal rectification assisted by lattice transitions, Int. J. Therm. Sci. 81, 76 (2014)

    Article  Google Scholar 

  87. V. Birman, Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50(11), 629 (1997)

    Article  ADS  Google Scholar 

  88. E. Pallecchi, Z. Chen, G. E. Fernandes, Y. Wan, J. H. Kim, and J. Xu, A thermal diode and novel implementation in a phase-change material, Mater. Horiz. 2(1), 125 (2015)

    Article  Google Scholar 

  89. S. Wang, A. L. Cottrill, Y. Kunai, A. R. Toland, P. Liu, W. J. Wang, and M. S. Strano, Microscale solidstate thermal diodes enabling ambient temperature thermal circuits for energy applications, Phys. Chem. Chem. Phys. 19(20), 13172 (2017)

    Article  Google Scholar 

  90. J. A. Leon-Gil, J. J. Martinez-Flores, and J. Alvarez-Quintana, A hybrid thermal diode based on phase transition materials, J. Mater. Sci. 54(4), 3211 (2019)

    Article  ADS  Google Scholar 

  91. H. Kang, F. Yang, and J. J. Urban, Thermal rectification via heterojunctions of solid-state phase-change materials, Phys. Rev. Appl. 10(2), 024034 (2018)

    Article  ADS  Google Scholar 

  92. A. L. Cottrill, S. Wang, A. T. Liu, W. J. Wang, and M. S. Strano, Dual phase change thermal diodes for enhanced rectification ratios: Theory and experiment, Adv. Energy Mater. 8(11), 1702692 (2018)

    Article  Google Scholar 

  93. S. O. Kasali, J. Ordonez-Miranda, and K. Joulain, Conductive thermal diode based on two phase-change materials, Int. J. Therm. Sci. 153, 106393 (2020)

    Article  Google Scholar 

  94. C. Y. Tso and C. Y. H. Chao, Solid-state thermal diode with shape memory alloys, Int. J. Heat Mass Transfer 93, 605 (2016)

    Article  Google Scholar 

  95. M. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy 3(10), 899 (2018)

    Article  ADS  Google Scholar 

  96. D. W. Hengeveld, M. M. Mathison, J. E. Braun, E. A. Groll, and A. D. Williams, Review of modern spacecraft thermal control technologies, HVAC & R Res. 16(2), 189 (2010)

    Article  Google Scholar 

  97. L. Guo, X. Zhang, Y. Huang, R. Hu, and C. Liu, Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor, Appl. Therm. Eng. 113, 1242 (2017)

    Article  Google Scholar 

  98. P. R. Gaddam, S. T. Huxtable, and W. A. Ducker, A liquid-state thermal diode, Int. J. Heat Mass Transfer 106, 741 (2017)

    Article  Google Scholar 

  99. H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, and J. Chen, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun. 8(1), 15843 (2017)

    Article  ADS  Google Scholar 

  100. M. Kasprzak, M. Sledzinska, K. Zaleski, I. Iatsunskyi, F. Alzina, S. Volz, C. M. Sotomayor Torres, and B. Graczykowski, High-temperature silicon thermal diode and switch, Nano Energy 78, 105261 (2020)

    Article  Google Scholar 

  101. T. Zhang and T. Luo, Giant thermal rectification from polyethylene nanofiber thermal diodes, Small 11(36), 4657 (2015)

    Article  Google Scholar 

  102. J. Hu, X. Ruan, and Y. P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study, Nano Lett. 9(7), 2730 (2009)

    Article  ADS  Google Scholar 

  103. N. Yang, N. Li, L. Wang, and B. Li, Thermal rectification and negative differential thermal resistance in lattices with mass gradient, Phys. Rev. B 76, 020301(R) (2007)

    Article  ADS  Google Scholar 

  104. N. Yang, G. Zhang, and B. Li, Carbon nanocone: A promising thermal rectifier, Appl. Phys. Lett. 93(24), 243111 (2008)

    Article  ADS  Google Scholar 

  105. G. Wu and B. Li, Thermal rectifiers from deformed carbon nanohorns, J. Phys. Condens. Matter 20(17), 175211 (2008)

    Article  ADS  Google Scholar 

  106. N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Appl. Phys. Lett. 95(3), 033107 (2009)

    Article  ADS  Google Scholar 

  107. M. Criado-Sancho, F. X. Alvarez, and D. Jou, Thermal rectification in inhomogeneous nanoporous Si devices, J. Appl. Phys. 114(5), 053512 (2013)

    Article  ADS  Google Scholar 

  108. M. G. Naso, E. Vuk, and F. Zullo, On the optimization of heat rectification in graded materials, Int. J. Heat Mass Transfer 143, 118520 (2019)

    Article  Google Scholar 

  109. Y. Y. Liu, W. X. Zhou, L. M. Tang, and K. Q. Chen, An important mechanism for thermal rectification in graded nanowires, Appl. Phys. Lett. 105(20), 203111 (2014)

    Article  ADS  Google Scholar 

  110. X. K. Chen, J. Liu, Z. X. Xie, Y. Zhang, Y. X. Deng, and K. Q. Chen, A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions, Appl. Phys. Lett. 113(12), 121906 (2018)

    Article  ADS  Google Scholar 

  111. Y. Wang, S. Chen, and X. Ruan, Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study, Appl. Phys. Lett. 100(16), 163101 (2012)

    Article  ADS  Google Scholar 

  112. C. Zhang, M. An, Z. Guo, and S. Chen, Perturbation theory of thermal rectification, Phys. Rev. E 102(4), 042106 (2020)

    Article  ADS  Google Scholar 

  113. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is — and what is not — an optical isolator, Nat. Photonics 7(8), 579 (2013)

    Article  ADS  Google Scholar 

  114. V. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE 108(10), 1684 (2020)

    Article  Google Scholar 

  115. C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and Z. L. Deck-Léger, Electromagnetic nonreciprocity, Phys. Rev. Appl. 10(4), 047001 (2018)

    Article  ADS  Google Scholar 

  116. H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5(9), 667 (2020)

    Article  ADS  Google Scholar 

  117. B. Liang, B. Yuan, and J. C. Cheng, Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett. 103(10), 104301 (2009)

    Article  ADS  Google Scholar 

  118. B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)

    Article  ADS  Google Scholar 

  119. H. Masoud, and H. A. Stone, The reciprocal theorem in fluid dynamics and transport phenomena, J. Fluid Mech. 879, P1 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  120. X. Xu and T. Qian, Generalized Lorentz reciprocal theorem in complex fluids and in non-isothermal systems, J. Phys.: Condens. Matter 31(47), 475101 (2019)

    ADS  Google Scholar 

  121. G. Wu, Y. Long, and J. Ren, Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode, Phys. Rev. B 97(20), 205423 (2018)

    Article  ADS  Google Scholar 

  122. D. He, S. Buyukdagli, and B. Hu, Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices, Phys. Rev. B 80(10), 104302 (2009)

    Article  ADS  Google Scholar 

  123. J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, and Y. P. Chen, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 99(11), 113101 (2011)

    Article  ADS  Google Scholar 

  124. X. K. Chen, J. Liu, Z. H. Peng, D. Du, and K. Q. Chen, A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures, Appl. Phys. Lett. 110(9), 091907 (2017)

    Article  ADS  Google Scholar 

  125. A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, and F. Giazotto, Negative differential thermal conductance and heat amplification in superconducting hybrid devices, Phys. Rev. B 93(13), 134508 (2016)

    Article  ADS  Google Scholar 

  126. H. Liu, C. Wang, L. Q. Wang, and J. Ren, Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems, Phys. Rev. E 99(3), 032114 (2019)

    Article  ADS  Google Scholar 

  127. Y. Yang, D. Ma, Y. Zhao, and L. Zhang, Negative differential thermal resistance effect in a macroscopic homojunction, J. Appl. Phys. 127(19), 195301 (2020)

    Article  ADS  Google Scholar 

  128. G. L. Pollack, Kapitza resistance, Rev. Mod. Phys. 41(1), 48 (1969)

    Article  ADS  Google Scholar 

  129. E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)

    Article  ADS  Google Scholar 

  130. G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, San Diego, 1998

    Google Scholar 

  131. H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando, 1985

    Google Scholar 

  132. O. H. Schmitt, A thermionic trigger, J. Sci. Instrum. 15(1), 24 (1938)

    Article  ADS  Google Scholar 

  133. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)

    Article  ADS  Google Scholar 

  134. C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect, arXiv: 1508.07106 (2015)

  135. D. Dubnau and R. Losick, Bistability in bacteria, Mol. Microbiol. 61(3), 564 (2006)

    Article  Google Scholar 

  136. J. W. Veening, W. K. Smits, and O. P. Kuipers, Bistability, epigenetics, and bet-hedging in bacteria, Annu. Rev. Microbiol. 62(1), 193 (2008)

    Article  Google Scholar 

  137. R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. Thong, An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams, Adv. Funct. Mater. 21(9), 1602 (2011)

    Article  Google Scholar 

  138. J. Wang, G. Dai, F. Yang, and J. Huang, Designing bistability or multistability in macroscopic diffusive systems, Phys. Rev. E 101(2), 022119 (2020)

    Article  ADS  Google Scholar 

  139. L. Chua, Memristor — The missing circuit element, IEEE Trans. Circuit Theory 18(5), 507 (1971)

    Article  Google Scholar 

  140. D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Toward the complete relational graph of fundamental circuit elements, Chin. Phys. B 24(6), 068402 (2015)

    Article  ADS  Google Scholar 

  141. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature 453(7191), 80 (2008)

    Article  ADS  Google Scholar 

  142. M. Di Ventra, Y. V. Pershin, and L. O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors, Proc. IEEE 97(10), 1717 (2009)

    Article  Google Scholar 

  143. Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60(2), 145 (2011)

    Article  ADS  Google Scholar 

  144. Y. V. Pershin, S. La Fontaine, and M. Di Ventra, Memristive model of amoeba learning, Phys. Rev. E 80(2), 021926 (2009)

    Article  ADS  Google Scholar 

  145. V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide, Nature 554(7693), 500 (2018)

    Article  ADS  Google Scholar 

  146. P. Ben-Abdallah, Thermal memristor and neuromorphic networks for manipulating heat flow, AIP Adv. 7(6), 065002 (2017)

    Article  ADS  Google Scholar 

  147. F. Yang, M. P. Gordon, and J. J. Urban, Theoretical framework of the thermal memristor via a solidstate phase change material, J. Appl. Phys. 125(2), 025109 (2019)

    Article  ADS  Google Scholar 

  148. K. Liu, S. Lee, S. Yang, O. Delaire, and J. Wu, Recent progresses on physics and applications of vanadium dioxide, Mater. Today 21(8), 875 (2018)

    Article  Google Scholar 

  149. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Phase-transition driven memristive system, Appl. Phys. Lett. 95(4), 043503 (2009)

    Article  ADS  Google Scholar 

  150. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Memory metamaterials, Science 325(5947), 1518 (2009)

    Article  ADS  Google Scholar 

  151. X. Shen, Y. Li, C. Jiang, and J. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)

    Article  ADS  Google Scholar 

  152. J. Wang, J. Shang, and J. Huang, Negative energy consumption of thermostats at ambient temperature: Electricity generation with zero energy maintenance, Phys. Rev. Appl. 11(2), 024053 (2019)

    Article  ADS  Google Scholar 

  153. J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  154. U. Leonhardt, Controlling electromagnetic fields, Science 312(5781), 1777 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  155. U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)

    Article  ADS  Google Scholar 

  156. H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)

    Article  ADS  Google Scholar 

  157. M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76(12), 126501 (2013)

    Article  ADS  Google Scholar 

  158. H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)

    Article  ADS  Google Scholar 

  159. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Cloaking of matter waves, Phys. Rev. Lett. 100(12), 123002 (2008)

    Article  ADS  Google Scholar 

  160. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)

    Article  ADS  Google Scholar 

  161. D. A. Genov, S. Zhang, and X. Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys. 5(9), 687 (2009)

    Article  Google Scholar 

  162. Y. A. Urzhumov and D. R. Smith, Fluid flow control with transformation media, Phys. Rev. Lett. 107(7), 074501 (2011)

    Article  ADS  Google Scholar 

  163. J. Park, J. R. Youn, and Y. S. Song, Hydrodynamic metamaterial cloak for drag-free flow, Phys. Rev. Lett. 123(7), 074502 (2019)

    Article  ADS  Google Scholar 

  164. F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, DC electric invisibility cloak, Phys. Rev. Lett. 109(5), 053902 (2012)

    Article  ADS  Google Scholar 

  165. G. W. Milton, M. Briane, and J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8(10), 248 (2006)

    Article  ADS  Google Scholar 

  166. Y. Li, X. Shen, J. Huang, and Y. Ni, Temperaturede-pendent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow, Phys. Lett. A 380(18–19), 1641 (2016)

    Article  ADS  Google Scholar 

  167. C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech. Res. Commun. 36(4), 481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  168. J.P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer, Singapore, 2020

    Book  Google Scholar 

  169. S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)

    Article  ADS  Google Scholar 

  170. S. R. Sklan and B. Li, A unified approach to nonlinear transformation materials, Sci. Rep. 8(1), 4436 (2018)

    Article  ADS  Google Scholar 

  171. A. Zareei and M. R. Alam, Cloaking in shallow-water waves via nonlinear medium transformation, J. Fluid Mech. 778, 273 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  172. X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, Thermal cloak-concentrator, Appl. Phys. Lett. 109(3), 031907 (2016)

    Article  ADS  Google Scholar 

  173. G. Park, S. Kang, H. Lee, and W. Choi, Tunable multifunctional thermal metamaterials: Manipulation of local heat flux via assembly of unit-cell thermal shifters, Sci. Rep. 7(1), 41000 (2017)

    Article  ADS  Google Scholar 

  174. J. Shang, B. Y. Tian, C. R. Jiang, and J. P. Huang, Digital thermal metasurface with arbitrary infrared thermogram, Appl. Phys. Lett. 113(26), 261902 (2018)

    Article  ADS  Google Scholar 

  175. J. Wang, F. Yang, L. Xu, and J. Huang, Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity, Phys. Rev. Appl. 14(1), 014008 (2020)

    Article  ADS  Google Scholar 

  176. S. Kang, J. Cha, K. Seo, S. Kim, Y. Cha, H. Lee, J. Park, and W. Choi, Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells, Int. J. Heat Mass Transfer 130, 469 (2019)

    Article  Google Scholar 

  177. C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through vacuum, Phys. Rev. Lett. 104(15), 154301 (2010)

    Article  ADS  Google Scholar 

  178. T. Ruokola, T. Ojanen, and A. P. Jauho, Thermal rectification in nonlinear quantum circuits, Phys. Rev. B 79(14), 144306 (2009)

    Article  ADS  Google Scholar 

  179. P. Ben-Abdallah and S. A. Biehs, Phase-change radiative thermal diode, Appl. Phys. Lett. 103(19), 191907 (2013)

    Article  ADS  Google Scholar 

  180. Y. Yang, S. Basu, and L. Wang, Radiation-based nearfield thermal rectification with phase transition materials, Appl. Phys. Lett. 103(16), 163101 (2013)

    Article  ADS  Google Scholar 

  181. P. Ben-Abdallah and S. A. Biehs, Near-field thermal transistor, Phys. Rev. Lett. 112(4), 044301 (2014)

    Article  ADS  Google Scholar 

  182. V. Kubytskyi, S. A. Biehs, and P. Ben-Abdallah, Radiative bistability and thermal memory, Phys. Rev. Lett. 113(7), 074301 (2014)

    Article  ADS  Google Scholar 

  183. S. A. Dyakov, J. Dai, M. Yan, and M. Qiu, Near field thermal memory based on radiative phase bistability of VO2, J. Phys. D Appl. Phys. 48(30), 305104 (2015)

    Article  Google Scholar 

  184. J. Ordonez-Miranda, Y. Ezzahri, J. A. Tiburcio-Moreno, K. Joulain, and J. Drevillon, Radiative thermal memristor, Phys. Rev. Lett. 123(2), 025901 (2019)

    Article  ADS  Google Scholar 

  185. I. Latella, R. Messina, J. M. Rubi, and P. Ben-Abdallah, Radiative heat shuttling, Phys. Rev. Lett. 113, 074301 (2018)

    Google Scholar 

  186. P. Ben-Abdallah and S. A. Biehs, Contactless heat flux control with photonic devices, AIP Adv. 5(5), 053502 (2015)

    Article  ADS  Google Scholar 

  187. L. M. Jiji, Heat Conduction, 3rd Ed., Springer, Berlin, 2009

    Book  MATH  Google Scholar 

  188. J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, and K. Joulain, Transistorlike device for heating and cooling based on the thermal hysteresis of VO2, Phys. Rev. Appl. 6(5), 054003 (2016)

    Article  ADS  Google Scholar 

  189. J. R. Howell, M. P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer, 6th Ed., CRC Press, Boca Raton, 2016

    Google Scholar 

  190. H. Gomart and J. Taine, Validity criterion of the radiative Fourier law for an absorbing and scattering medium, Phys. Rev. E 83(2), 021202 (2011)

    Article  ADS  Google Scholar 

  191. S. P. Jr Clark, Radiative transfer ia the earth’s mantle, Eos, Transactions American Geophysical Union 38, 931 (1957)

    Article  ADS  Google Scholar 

  192. J. R. Aronson, L. H. Bellotti, S. W. Eckroad, A. G. Emslie, R. K. McConnell, and P. C. von Thüna, Infrared spectra and radiative thermal conductivity of minerals at high temperatures, J. Geophys. Res. 75(17), 3443 (1970)

    Article  ADS  Google Scholar 

  193. J. F. Schatz and G. Simmons, Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res. 77(35), 6966 (1972)

    Article  ADS  Google Scholar 

  194. V. A. Petrov, Combined radiation and conduction heat transfer in high temperature fiber thermal insulation, Int. J. Heat Mass Transfer 40(9), 2241 (1997)

    Article  MATH  Google Scholar 

  195. J. S. Kwon, C. H. Jang, H. Jung, and T. H. Song, Effective thermal conductivity of various filling materials for vacuum insulation panels, Int. J. Heat Mass Transfer 52(23–24), 5525 (2009)

    Article  Google Scholar 

  196. S. Y. Zhao, B. M. Zhang, and X. D. He, Temperature and pressure dependent effective thermal conductivity of fibrous insulation, Int. J. Therm. Sci. 48(2), 440 (2009)

    Article  Google Scholar 

  197. X. Lu, R. Caps, J. Fricke, C. T. Alviso, and R. W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non-Cryst. Solids 188(3), 226 (1995)

    Article  ADS  Google Scholar 

  198. J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures, J. Phys. D Appl. Phys. 46(1), 015304 (2013)

    Article  ADS  Google Scholar 

  199. D. Dan, H. Zhang, and W. Q. Tao, Effective structure of aerogels and decomposed contributions of its thermal conductivity, Appl. Therm. Eng. 72(1), 2 (2014)

    Article  Google Scholar 

  200. Y. L. He and T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81, 28 (2015)

    Article  Google Scholar 

  201. Y. J. Dai, Y. Q. Tang, W. Z. Fang, H. Zhang, and W. Q. Tao, A theoretical model for the effective thermal conductivity of silica aerogel composites, Appl. Therm. Eng. 128, 1634 (2018)

    Article  Google Scholar 

  202. L. Xu, G. Dai, and J. Huang, Transformation multithermotics: Controlling radiation and conduction simultaneously, Phys. Rev. Appl. 13(2), 024063 (2020)

    Article  ADS  Google Scholar 

  203. L. Xu and J. Huang, Metamaterials for manipulating thermal radiation: Transparency, cloak, and expander, Phys. Rev. Appl. 12(4), 044048 (2019)

    Article  ADS  Google Scholar 

  204. L. Xu, S. Yang, G. Dai, and J. Huang, Transformation omnithermotics: Simultaneous manipulation of three basic modes of heat transfer, ES Energy Environ. 7, 65 (2020)

    Google Scholar 

  205. S. Yang, L. Xu, G. Dai, and J. Huang, Omnithermal metamaterials switchable between transparency and cloaking, J. Appl. Phys. 128(9), 095102 (2020)

    Article  ADS  Google Scholar 

  206. A. M. Hofmeister, Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science 283(5408), 1699 (1999)

    Article  ADS  Google Scholar 

  207. F. Bellet, E. Chalopin, F. Fichot, E. Iacona, and J. Taine, RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles, Int. J. Heat Mass Transfer 52(5–6), 1544 (2009)

    Article  MATH  Google Scholar 

  208. C. Su, L. J. Xu, and J. Huang, Nonlinear thermal conductivities of core-shell metamaterials: Rigorous theory and intelligent application, EPL 130(3), 34001 (2020)

    Article  ADS  Google Scholar 

  209. J. Li, Y. Li, P. C. Cao, T. Yang, X. F. Zhu, W. Wang, and C. W. Qiu, A continuously tunable solid-like convective thermal metadevice on the reciprocal line, Adv. Mater. 32(42), 2003823 (2020)

    Article  Google Scholar 

  210. D. Torrent, P. Poncelet, and J. C. Batsale, Nonreciprocal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)

    Article  ADS  Google Scholar 

  211. M. Camacho, B. Edwards, and N. Engheta, Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials, Nat. Commun. 11(1), 3733 (2020)

    Article  ADS  Google Scholar 

  212. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics, World Scientific, Singapore, 1998

    Book  MATH  Google Scholar 

  213. E. Palm, Nonlinear thermal convection, Annu. Rev. Fluid Mech. 7(1), 39 (1975)

    Article  MATH  ADS  Google Scholar 

  214. F. H. Busse, Non-linear properties of thermal convection, Rep. Prog. Phys. 41(12), 1929 (1978)

    Article  ADS  Google Scholar 

  215. E. Bodenschatz, W. Pesch, and G. Ahlers, Recent developments in Rayleigh-Bénard convection, Annu. Rev. Fluid Mech. 32(1), 709 (2000)

    Article  MATH  ADS  Google Scholar 

  216. G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys. 81(2), 503 (2009)

    Article  ADS  Google Scholar 

  217. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  218. M. Y. Wong, B. Traipattanakul, C. Y. Tso, C. Y. H. Chao, and H. Qiu, Experimental and theoretical study of a water-vapor chamber thermal diode, Int. J. Heat Mass Transfer 138, 173 (2019)

    Article  Google Scholar 

  219. A. Pugsley, A. Zacharopoulos, J. Deb Mondol, and M. Smyth, Theoretical and experimental analysis of a horizontal planar Liquid-Vapour Thermal Diode (PLVTD), Int. J. Heat Mass Transfer 144, 118660 (2019)

    Article  Google Scholar 

  220. J. B. Boreyko, Y. Zhao, and C. H. Chen, Planar jumping-drop thermal diodes, Appl. Phys. Lett. 99(23), 234105 (2011)

    Article  ADS  Google Scholar 

  221. M. Edalatpour, K. R. Murphy, R. Mukherjee, and J. B. Boreyko, Bridging-droplet thermal diodes, Adv. Funct. Mater. 30(43), 2004451 (2020)

    Article  Google Scholar 

  222. Z. Meng, R. Gulfam, P. Zhang, and F. Ma, Numerical and experimental study of the thermal rectification of a solid-liquid phase change thermal diode, Int. J. Heat Mass Transfer 147, 118915 (2020)

    Article  Google Scholar 

  223. H. N. Chaudhry, B. R. Hughes, and S. A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev. 16(4), 2249 (2012)

    Article  Google Scholar 

  224. G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames, Thermal diodes, regulators, and switches: Physical mechanisms and potential applications, Appl. Phys. Rev. 4(4), 041304 (2017)

    Article  ADS  Google Scholar 

  225. C. Khandekar and A. W. Rodriguez, Thermal bistability through coupled photonic resonances, Appl. Phys. Lett. 111(8), 083104 (2017)

    Article  ADS  Google Scholar 

  226. A. M. Morsy, R. Biswas, and M. L. Povinelli, High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs, APL Photon. 4(1), 010804 (2019)

    Article  ADS  Google Scholar 

  227. M. Criado-Sancho and D. Jou, A simple model of thermoelastic heat switches and heat transistors, J. Appl. Phys. 121(2), 024503 (2017)

    Article  ADS  Google Scholar 

  228. Z. M. Zhang, Nano/Microscale Heat Transfer, 2nd Ed., Springer, 2020

  229. M. Reina, R. Messina, S. A. Biehs, and P. Ben-Abdallah, Thermomechanical bistability of phase transition oscillators driven by near-field heat exchange, Phys. Rev. B 101, 041409(R) (2020)

    Article  ADS  Google Scholar 

  230. M. Elzouka and S. Ndao, Near-field NanoThermoMechanical memory, Appl. Phys. Lett. 105(24), 243510 (2014)

    Article  ADS  Google Scholar 

  231. G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2002

    Book  MATH  Google Scholar 

  232. T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd Ed., Oxford University Press, Oxford, 2016

    Google Scholar 

  233. M. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. Rep. 63(1), 1 (2008)

    Article  Google Scholar 

  234. J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, Int. J. Heat Mass Transfer 49(17–18), 3075 (2006)

    Article  MATH  Google Scholar 

  235. J. Li, Y. Li, W. Wang, L. Li, and C. W. Qiu, Effective medium theory for thermal scattering off rotating structures, Opt. Express 28(18), 25894 (2020)

    Article  ADS  Google Scholar 

  236. J. Fan and L. Wang, Review of heat conduction in nanofluids, J. Heat Transfer 133(4), 040801 (2011)

    Article  Google Scholar 

  237. G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics, J. Non-Equilib. Thermodyn. 39(1), 35 (2014)

    Article  ADS  Google Scholar 

  238. D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, Solid State Phys. 46, 147 (1992)

    Article  Google Scholar 

  239. V. A. Markel, Maxwell Garnett approximation (advanced topics): Tutorial, J. Opt. Soc. Am. A 33(11), 2237 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  240. J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)

    Article  ADS  Google Scholar 

  241. R. Wang, J. Shang, and J. Huang, Design and realization of thermal camouflage with many-particle systems, Int. J. Therm. Sci. 131, 14 (2018)

    Article  Google Scholar 

  242. J. Shang, C. Jiang, L. Xu, and J. Huang, Many-particle thermal invisibility and diode from effective media, J. Heat Transfer 140(9), 092004 (2018)

    Article  Google Scholar 

  243. L. Xu, C. Jiang, J. Shang, R. Wang, and J. Huang, Periodic composites: Quasiuniform heat conduction, Janus thermal illusion, and illusion thermal diodes, Eur. Phys. J. B 90(11), 221 (2017)

    Article  ADS  Google Scholar 

  244. L. Xu, S. Yang, and J. Huang, Thermal transparency induced by periodic interparticle interaction, Phys. Rev. Appl. 11(3), 034056 (2019)

    Article  ADS  Google Scholar 

  245. G. Dai, J. Shang, R. Wang, and J. Huang, Nonlinear thermotics: Nonlinearity enhancement and harmonic generation in thermal metasurfaces, Eur. Phys. J. B 91(3), 59 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  246. G. Dai, Designing Thermal metamaterials: Theories Beyond Conduction and Linearity, Ph.D. Dissertation, Fudan University, Shanghai, 2020) (in Chinese)

    Google Scholar 

  247. M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Phys. Rev. Lett. 110(2), 025902 (2013)

    Article  ADS  Google Scholar 

  248. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and A. B. Movchan, Advances in the Rayleigh multipole method for problems in photonics and phononics, in: UTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, Solid Mechanics and Its Applications, edited by R. C. McPhedran, L. C. Botten, and N. A. Nicorovici, Springer, Dordrecht, 2001, pp 15–28

    Google Scholar 

  249. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, Multipole method for microstructured optical fibers. I. Formulation, J. Opt. Soc. Am. B 19(10), 2322 (2002)

    Article  ADS  Google Scholar 

  250. G. Gu, K. W. Yu, and P. M. Hui, First-principles approach to conductivity of a nonlinear composite, Phys. Rev. B 58(6), 3057 (1998)

    Article  ADS  Google Scholar 

  251. G. Dai and J. Huang, Nonlinear thermal conductivity of periodic composites, Int. J. Heat Mass Transfer 147, 118917 (2020)

    Article  Google Scholar 

  252. R. C. McPhedran and D. R. McKenzie, The conductivity of lattices of spheres (I): The simple cubic lattice, Proc. R. Soc. Lond. A Math. Phys. Sci. 359(1696), 45 (1978)

    ADS  Google Scholar 

  253. D. R. McKenzie, R. C. McPhedran, and G. H. Derrick, The conductivity of lattices of spheres (II): The body centred and face centred cubic lattices, Proc. R. Soc. Lond. A Math. Phys. Sci. 362(1709), 211 (1978)

    ADS  Google Scholar 

  254. N. A. Nicorovici and R. C. McPhedran, Transport properties of arrays of elliptical cylinders, Phys. Rev. E 54(2), 1945 (1996)

    Article  ADS  Google Scholar 

  255. J. G. Yardley, R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, Addition formulas and the Rayleigh identity for arrays of elliptical cylinders, Phys. Rev. E 60(5), 6068 (1999)

    Article  ADS  Google Scholar 

  256. S. Yang, L. Xu, and J. Huang, Metathermotics: Nonlinear thermal responses of core-shell metamaterials, Phys. Rev. E 99(4), 042144 (2019)

    Article  ADS  Google Scholar 

  257. A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, Active and tunable metamaterials, Laser Photonics Rev. 5(2), 287 (2011)

    Article  ADS  Google Scholar 

  258. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Colloquium: Nonlinear metamaterials, Rev. Mod. Phys. 86(3), 1093 (2014)

    Article  ADS  Google Scholar 

  259. G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)

    Article  ADS  Google Scholar 

  260. A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear meta-surfaces: A paradigm shift in nonlinear opticss, Mater. Today 21(1), 8 (2018)

    Article  Google Scholar 

  261. S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)

    Article  ADS  Google Scholar 

  262. K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, Flexible mechanical metamaterials, Nat. Rev. Mater. 2(11), 17066 (2017)

    Article  ADS  Google Scholar 

  263. G. Dai, J. Shang, and J. Huang, Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage, Phys. Rev. E 97(2), 022129 (2018)

    Article  ADS  Google Scholar 

  264. G. Dai and J. Huang, A transient regime for transforming thermal convection: Cloaking, concentrating, and rotating creeping flow and heat flux, J. Appl. Phys. 124(23), 235103 (2018)

    Article  ADS  Google Scholar 

  265. T. Stedman and L. M. Woods, Cloaking of thermoelectric transport, Sci. Rep. 7(1), 6988 (2017)

    Article  ADS  Google Scholar 

  266. A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24(2), 413 (2003)

    Article  Google Scholar 

  267. G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Probl. 25(12), 123011 (2009)

    Article  MATH  ADS  Google Scholar 

  268. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev. 51(1), 3 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  269. S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, Review of numerical optimization techniques for meta-device design, Opt. Mater. Express 9(4), 1842 (2019)

    Article  ADS  Google Scholar 

  270. E. M. Dede, T. Nomura, and J. Lee, Thermal-composite design optimization for heat flux shielding, focusing, and reversal, Struct. Multidiscipl. Optim. 49(1), 59 (2014)

    Article  MathSciNet  Google Scholar 

  271. G. Fujii, Y. Akimoto, and M. Takahashi, Exploring optimal topology of thermal cloaks by CMA-ES, Appl. Phys. Lett. 112(6), 061108 (2018)

    Article  ADS  Google Scholar 

  272. G. V. Alekseev and D. A. Tereshko, Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices, Int. J. Heat Mass Transfer 135, 1269 (2019)

    Article  Google Scholar 

  273. J. Guo, Z. Qu, and X. Wang, A reverse thermal cloak design method based on inverse problem theory, ES Energy Environ. 7, 71 (2020)

    Google Scholar 

  274. W. Sha, Y. Zhao, L. Gao, M. Xiao, and R. Hu, Illusion thermotics with topology optimization, J. Appl. Phys. 128(4), 045106 (2020)

    Article  ADS  Google Scholar 

  275. M. Seo, H. Park, and S. Min, Heat flux manipulation by using a single-variable formulated multi-scale topology optimization method, Int. Commun. Heat Mass Transf. 118, 104873 (2020)

    Article  Google Scholar 

  276. J. C. Álvarez Hostos, V. D. Fachinotti, and I. Peralta, Computational design of thermo-mechanical metadevices using topology optimization, Appl. Math. Model. 90, 758 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  277. G. Fujii and Y. Akimoto, Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current, Appl. Phys. Lett. 115(17), 174101 (2019)

    Article  ADS  Google Scholar 

  278. M. Farhat, S. Guenneau, P. Y. Chen, A. Alù, and K. N. Salama, Scattering cancellation-based cloaking for the Maxwell-Cattaneo heat waves, Phys. Rev. Appl. 11(4), 044089 (2019)

    Article  ADS  Google Scholar 

  279. A. L. Chen, Z. Y. Li, T. X. Ma, X. S. Li, and Y. S. Wang, Heat reduction by thermal wave crystals, Int. J. Heat Mass Transfer 121, 215 (2018)

    Article  Google Scholar 

  280. A. Sellitto, V. Tibullo, and Y. Dong, Nonlinear heattransport equation beyond Fourier law: Application to heatwave propagation in isotropic thin layers, Contin. Mech. Thermodyn. 29(2), 411 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  281. Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  282. A. Sellitto and M. Di Domenico, Nonlocal and nonlinear contributions to the thermal and elastic highfrequency wave propagations at nanoscale, Contin. Mech. Thermodyn. 31(3), 807 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  283. M. Maldovan, Phonon wave interference and thermal bandgap materials, Nat. Mater. 14(7), 667 (2015)

    Article  ADS  Google Scholar 

  284. M. Sledzinska, B. Graczykowski, J. Maire, E. Chavez-Angel, C. M. Sotomayor-Torres, and F. Alzina, 2D phononic crystals: Progress and prospects in hypersound and thermal transport engineering, Adv. Funct. Mater. 30(8), 1904434 (2020)

    Article  Google Scholar 

  285. M. I. Hussein, C. N. Tsai, and H. Honarvar, Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: A review and comparative analysis, Adv. Funct. Mater. 30(8), 1906718 (2020)

    Article  Google Scholar 

  286. N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, Engineering thermal conductance using a two-dimensional phononic crystal, Nat. Commun. 5(1), 3435 (2014)

    Article  ADS  Google Scholar 

  287. B. Li, K. T. Tan, and J. Christensen, Tailoring the thermal conductivity in nanophononic metamaterials, Phys. Rev. B 95(14), 144305 (2017)

    Article  ADS  Google Scholar 

  288. Y. Li, Y. G. Peng, L. Han, M. A. Miri, W. Li, M. Xiao, X. F. Zhu, J. Zhao, A. Alù, S. Fan, and C. W. Qiu, Anti-parity-time symmetry in diffusive systems, Science 364, 170 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  289. P. Cao, Y. Li, Y. Peng, C. Qiu, and Z. Xue, High-order exceptional points in diffusive systems: Robust apt symmetry against perturbation and phase oscillation at apt symmetry breaking, ES Energy Environ. 7, 48 (2020)

    Google Scholar 

  290. L. Xu and J. Huang, Negative thermal transport in conduction and advection, Chin. Phys. Lett. 37(8), 080502 (2020)

    Article  MATH  ADS  Google Scholar 

  291. L. J. Xu and J. P. Huang, Active thermal wave cloak, Chin. Phys. Lett. 37(12), 120501 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Jun Wang for beneficial discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Le Dai.

Additional information

arXiv: 2103.13305. Special Topic: Thermodynamics and Thermal Metamaterials (Editor: Ji-Ping Huang). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1048-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, GL. Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics. Front. Phys. 16, 53301 (2021). https://doi.org/10.1007/s11467-021-1048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1048-y

Keywords

Navigation