Skip to main content
Log in

Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Here, we reported a cancer nanovaccine based on SiO2 nanoflowers with a special radial pore structure, which greatly enhanced cross-presentation and induced the production of cytotoxic T lymphocyte cells secreting granzymes B and interferon-γ. The antigen ovalbumin was covalently conjugated onto the as-synthesized hierarchical SiO2 nanoflowers, and the adjuvant cytosine-phosphate-guanine was electrostatically adsorbed into their radial pore by simple mixing before use. The nanovaccine exhibited excellent storage stability without antigen release after 27 days of incubation, negligible cytotoxicity to dendritic cells, and a high antigen loading capacity of 430 ± 66 mg·g−1 support. Besides, the nanovaccine could be internalized by dendritic cells via multiple pathways. And the enhancement of antigen/adjuvant uptake and lysosome escape of antigen were observed. Noteworthy, in vitro culture of bone marrow-derived dendritic cells in the presence of nanovaccine proved the activation of dendritic cells and antigen cross-presentation as well as secretion of proinflammatory cytokines. Besides, in vivo study verified the targeting of nanovaccine to draining lymph nodes, the complete suppression of tumor in six out of ten mice, and the triggering of notable tumor growth delay. Overall, the present results indicated that the nanovaccine can be served as a potential therapeutic vaccine to treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly P N. The cancer immunotherapy revolution. Science, 2018, 359(6382): 1344–1345

    Article  CAS  Google Scholar 

  2. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382): 1355–1360

    Article  CAS  Google Scholar 

  3. Nam J, Son S, Park K S, Zou W, Shea L D, Moon J J. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews. Materials, 2019, 4(6): 398–414

    Article  Google Scholar 

  4. Hollingsworth R E, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4(1): 7

    Article  Google Scholar 

  5. Wculek S K, Cueto F J, Mujal A M, Melero I, Krummel M F, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nature Reviews. Immunology, 2020, 20(1): 1–18

    Article  Google Scholar 

  6. Hu Z, Ott P A, Wu C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews. Immunology, 2017, 18(3): 168–182

    Article  Google Scholar 

  7. Riley R S, June C H, Langer R, Mitchell M J. Delivery technologies for cancer immunotherapy. Nature Reviews. Drug Discovery, 2019, 18(3): 175–196

    Article  CAS  Google Scholar 

  8. Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomaterialia, 2019, 85: 1–26

    Article  CAS  Google Scholar 

  9. Newton J M, Sikora A G, Young S. Chapter 41—Materials-Based Cancer Immunotherapies: Principles of Regenerative Medicine. 3rd ed. Boston: Academic Press, 2019, 715–739

    Book  Google Scholar 

  10. Gause K T, Wheatley A K, Cui J, Yan Y, Kent S J, Caruso F. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano, 2017, 11(1): 54–68

    Article  CAS  Google Scholar 

  11. Gu L. Tailored silica nanomaterials for immunotherapy. ACS Central Science, 2018, 4(5): 527–529

    Article  CAS  Google Scholar 

  12. Giglio V, Varelaaramburu S, Travaglini L, Fiorini F, Seeberger P H, Maggini L, de Cola L. Reshaping silica particles: mesoporous nanodiscs for bimodal delivery and improved cellular uptake. Chemical Engineering Journal, 2018, 340: 148–154

    Article  CAS  Google Scholar 

  13. Yang Y, Lu Y, Abbaraju P L, Zhang J, Zhang M, Xiang G, Yu C. Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angewandte Chemie International Edition, 2017, 56(29): 8446–8450

    Article  CAS  Google Scholar 

  14. Abbaraju P L, Meka A K, Song H, Yang Y, Jambhrunkar M, Zhang J, Xu C, Yu M, Yu C. Asymmetric silica nanoparticles with tunable headtail structures enhance hemocompatibility and maturation of immune cells. Journal of the American Chemical Society, 2017, 139(18): 6321–6328

    Article  CAS  Google Scholar 

  15. Wang X, Li X, Ito A, Watanabe Y, Sogo Y, Tsuji N M, Ohno T. Stimulation of in vivo antitumor immunity with hollow mesoporous silica nanospheres. Angewandte Chemie International Edition, 2016, 55(5): 1899–1903

    Article  CAS  Google Scholar 

  16. Li X, Wang X, Sogo Y, Ohno T, Onuma K, Ito A. Mesoporous silicacalcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Advanced Healthcare Materials, 2013, 2(6): 863–871

    Article  CAS  Google Scholar 

  17. Li W A, Lu B Y, Gu L, Choi Y, Kim J, Mooney D J. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83: 249–256

    Article  CAS  Google Scholar 

  18. Wang X, Li X, Yoshiyuki K, Watanabe Y, Sogo Y, Ohno T, Tsuji N M, Ito A. Comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Advanced Healthcare Materials, 2016, 5(10): 1169–1176

    Article  CAS  Google Scholar 

  19. An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Applied Materials & Interfaces, 2017, 9(28): 23466–23475

    Article  CAS  Google Scholar 

  20. Cha B G, Jeong J H, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Central Science, 2018, 4(4): 484–492

    Article  CAS  Google Scholar 

  21. Moon D S, Lee J K. Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir, 2012, 28(33): 12341–12347

    Article  CAS  Google Scholar 

  22. Du X, Qiao S. Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. Small, 2015, 11(4): 392–413

    Article  CAS  Google Scholar 

  23. Shen Z, Li Y, Wen H, Ren X, Liu J, Yang L. Investigation on the role of surfactants in bubble-algae interaction in flotation harvesting of Chlorella vulgaris. Scientific Reports, 2018, 8(1): 3303

  24. Kuai R, Ochyl L J, Bahjat K S, Schwendeman A, Moon J J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature Materials, 2016, 16(4): 489–496

    Article  Google Scholar 

  25. Bowen W S, Svrivastava A K, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines, 2018, 17(3): 207–215

    Article  CAS  Google Scholar 

  26. Warrier V U, Makandar A I, Garg M, Sethi G, Kant R, Pal J K, Yuba E, Gupta R K. Engineering anti-cancer nanovaccine based on antigen cross-presentation. Bioscience Reports, 2019, 39(10): BSR20193220

    Article  CAS  Google Scholar 

  27. Casaravilla C, Pittini Á, Rückerl D, Seoane P I, Jenkins S J, MacDonald A S, Ferreira A M, Allen J E, Díaz Á. Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus. Infection and Immunity, 2014, 82(8): 3164–3176

    Article  Google Scholar 

  28. Yoshida S, Gaeta I, Pacitto R, Krienke L, Alge O, Gregorka B, Swanson J A. Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages. Frontiers in Physiology, 2015, 6: 8

    Article  Google Scholar 

  29. Kasai H, Inoue K, Imamura K, Yuvienco C, Montclare J K, Yamano S. Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway. Journal of Nanobiotechnology, 2019, 17(1): 11

    Article  Google Scholar 

  30. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Molecular Therapy, 2013, 21(6): 1118–1130

    Article  CAS  Google Scholar 

  31. Kubiak Ossowska K, Jachimska B, Al Qaraghuli M, Mulheran P A. Protein interactions with negatively charged inorganic surfaces. Current Opinion in Colloid & Interface Science, 2019, 41: 104–117

    Article  CAS  Google Scholar 

  32. Slowing I, Trewyn B G, Lin V S Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Journal of the American Chemical Society, 2006, 128(46): 14792–14793

    Article  CAS  Google Scholar 

  33. Latz E, Schoenemeyer A, Visintin A, Fitzgerald K A, Monks B G, Knetter C F, Lien E, Nilsen N J, Espevik T, Golenbock D T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunology, 2004, 5(2): 190–198

    Article  CAS  Google Scholar 

  34. Hjortø G M, Larsen O, Steen A, Daugvilaite V, Berg C, Fares S, Hansen M, Ali S, Rosenkilde M M. Differential CCR7 targeting in dendritic cells by three naturally occurring CC-chemokines. Frontiers in Immunology, 2016, 7: 568

    Article  Google Scholar 

  35. Gerlach C, Moseman E A, Loughhead S M, Alvarez D, Zwijnenburg A J, Waanders L, Garg R, de la Torre J C, von Andrian U H. The chemokine receptor CX3CR1 defines three antigen-experienced CD8+ T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity, 2016, 45(6): 1270–1284

    Article  CAS  Google Scholar 

  36. Lutz M B, Schuler G. Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends in Immunology, 2002, 23(9): 445–449

    Article  CAS  Google Scholar 

  37. Tugues S, Burkhard S H, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, Kulig P, Becher B. New insights into IL-12-mediated tumor suppression. Cell Death and Differentiation, 2015, 22(2): 237–246

    Article  CAS  Google Scholar 

  38. Kaplanski G, Marin V, Montero Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology, 2003, 24(1): 25–29

    Article  CAS  Google Scholar 

  39. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt D P, Pabst R, Lutz M B, Sorokin L. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity, 2005, 22(1): 19–29

    Article  CAS  Google Scholar 

  40. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annual Review of Immunology, 2004, 22(1): 745–763

    Article  CAS  Google Scholar 

  41. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch J V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity, 2005, 23(1): 41–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the National Natural Science Foundation of China (Grant No. 81972899), Natural Science Foundation of Tianjin City (Grant No. 18JCQNJC14500), CAMS Innovation Fund for Medical Sciences (Grant No. 2017-I2M-3-022), Specific Program for High-Tech Leader&Team of Tianjin Government, Tianjin innovation and promotion plan key innovation team of immunoreactive biomaterials. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Wang or Yanjun Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Dong, Y., Gao, J. et al. Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Front. Chem. Sci. Eng. 15, 1296–1311 (2021). https://doi.org/10.1007/s11705-020-2034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2034-6

Keywords

Navigation