Skip to main content
Log in

The Utilisation of Reduced Kinetics by Local Self-Similarity Tabulation Approach in 3D Turbulent Reactive Flow Simulation with LES and TPDF

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

A Correction to this article was published on 23 September 2021

This article has been updated

Abstract

Combustion simulations with high fidelity turbulence models and detailed chemistry may suffer from high computational power requirements due to the combined cost of time-scale dissipation and small integration steps. Such a limitation can be avoided by employing a hybrid reaction mechanism reduction method called local self-similarity tabulation (LS2T). LS2T directly solves several dominant species reactions and incorporates the effects of other species on dominant ones by data retrieval from pre-calculated tables. This paper demonstrates the application of LS2T method to a 3D combustion simulation of Sandia Flame-D. The combustion simulation uses large eddy simulation as turbulence solver and transported probability density function for species transport, to increase the accuracy of the simulation and avoid the use of any additional reaction model. The results show that by use of LS2T method, it is possible to maintain high accuracy and generate results similar to detailed chemistry of methane combustion while maintaining an acceptable computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The results of CFD simulations done in Ansys Fluent, and 0D combustor results of Cantera in Matlab are readily available. The experimental data used is shared by the Engine Combustion Network and is open for access.

Code availability

The scripts that are developed are currently available and can be presented for review as needed.

Change history

Abbreviations

\(\varDelta _f\) :

Filter Size

\(\varGamma\) :

Molecular diffusivity

\(\mu\) :

Dynamic viscosity

\(\dot{\omega }_{ll}\) :

Chemical source term by only light species

\(\varOmega _m\) :

Frequency of mixing within the subgrid

\(\dot{\omega }_{lh}\) :

Chemical source term by light and heavy species

\(\phi\) :

Composition space variables

\(\phi _{f}\) :

Initial equivalence ratio

\({{\varvec{\psi }}}\) :

Composition space vector

\(S({{\varvec{\psi }}})\) :

Filtered reaction source term \(\widetilde{\dot{\omega }}\)

\(\rho\) :

Density

\(C_k\) :

SGS kinetic energy transport model constant

\(CV_i\) :

Linear interpolated value at each corner point

\(d_i\) :

Distance of corner i for the inverse distance weighing

F :

One-point, one-time joint filtered density function

\({\mathbf {f}}^{\mathbf {c}}\) :

\({\mathbf {g}}_{\mathbf {l}}^{\mathbf {nc}}\) functions computable part by light species

\(F_m\) :

Favre averaged mixture fraction

\({\mathbf {f}}^{\mathbf {nc}}\) :

\({\mathbf {g}}_{\mathbf {l}}^{\mathbf {nc}}\) functions non-computed part that is dependent on heavy species only

\({\mathbf {g}}_{\mathbf {l}}\) :

Function representing light species reaction rates and enthalpy change

\({\mathbf {g}}_{\mathbf {l}}^{\mathbf {c}}\) :

\({\mathbf {g}}_{\mathbf {l}}\) functions computable part by light species

\({\mathbf {g}}_{\mathbf {l}}^{\mathbf {nc}}\) :

\({\mathbf {g}}_{\mathbf {l}}\) functions non-computed part that is a function of both light and heavy species

\({h}^{h}_{\alpha }\) :

Partial molar enthalpy of heavy species

\({h}^{l}_{\alpha }\) :

Partial molar enthalpy of light species

IV :

Interpolated value by inverse distance weighing

k :

Initial condition vector \((p_0,T_0,\phi )\)

\(k_{sgs}\) :

subgrid scale kinetic energy

\(N_h\) :

Number of heavy species

\(N_l\) :

Number of major(light) species

\(p_0\) :

Initial pressure

\({T}_{0}\) :

Initial temperature

t :

Time

\(\mathbf {u}\) :

Velocity vector

W :

Molecular mass

\(WF_i\) :

Weight factor of corner i for the inverse distance weighing

\(y_d\) :

The dominant variable for LS2T, normalised temperature

\(\mathbf{y} _h\) :

State variable representing heavy species concentrations and temperature

\(Y_h\) :

Mass fraction of heavy species

\(\mathbf{y} _l\) :

State variable representing light species concentrations and temperature

\(Y_l\) :

Mass fraction of light species

z :

The power term of corner i for the inverse distance weighing

\(\mathbf{Wi}\) :

Wiener process

References

  • Ansys: Ansys fluent r19.2 customization manual (2018)

  • Ansys: Fluent r19.2 theory guide (2018)

  • Barlow, R., Frank, J., Karpetis, A., Chen, J.Y.: Piloted methane/air jet flames: transport effects and aspects of scalar structure. Combust. Flame 143(4), 433–449 (2005)

    Article  Google Scholar 

  • Bell, J.B., Brown, N.J., Day, M.S., Frenklach, M., Grcar, J.F., Propp, R.M., Tonse, S.R.: Scaling and efficiency of prism in adaptive simulations of turbulent premixed flames. Proc. Combust. Inst. 28(1), 107–113 (2000)

    Article  Google Scholar 

  • Bellan, J.: From elementary kinetics in perfectly stirred reactors to reduced kinetics utilizable in turbulent reactive flow simulations for combustion devices. Combust. Flame 184(Supplement C), 286–296 (2017)

  • Bilger, R., Stårner, S., Kee, R.: On reduced mechanisms for methane/air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)

    Article  Google Scholar 

  • Bushe, W., Steiner, H.: Laminar flamelet decomposition for conditional source-term estimation. Phys. Fluids 15, 1564–1575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.Y.: A Eulerian PDF scheme for les of nonpremixed turbulent combustion with second-order accurate mixture fraction. Combust. Theor. Model. 11(5), 675–695 (2007)

    Article  MATH  Google Scholar 

  • Clayton, D.J., Jones, W.P.: Large eddy simulation of a methane–air diffusion flame. Flow Turbul. Combust. 81, 497–521 (2008)

    Article  MATH  Google Scholar 

  • Council, N.R.: The Potential Impact of High-End Capability Computing on Four Illustrative Fields of Science and Engineering. The National Academies Press, Washington, DC (2008)

    Google Scholar 

  • Di Renzo, M., Coclite, A., De Tullio, M.D., De Palma, P., Pascazio, G.: Les of the Sandia flame d using an FPV combustion model. Energy Procedia 82, 402–409 (2015)

    Article  Google Scholar 

  • Duan, Y., Xia, Z., Ma, L., Luo, Z., Huang, X., Deng, X.: Les of the Sandia flame series D–F using the Eulerian stochastic field method coupled with tabulated chemistry. Chin. J. Aeronaut. 33(1), 116–133 (2020)

    Article  Google Scholar 

  • Elbahloul, S., Rigopoulos, S.: Rate-controlled constrained equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia d/e/f) and comparison with detailed chemistry. Combust. Flame 162(5), 2256–2271 (2015)

    Article  Google Scholar 

  • Ferraris, S.A., Wen, J.X.: Les of the Sandia flame d using laminar flamelet decomposition for conditional source-term estimation. Flow Turbul. Combust. 81, 609–639 (2008)

    Article  MATH  Google Scholar 

  • Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Franzelli, B., Fiorina, B., Darabiha, N.: A tabulated chemistry method for spray combustion. Proc. Combust. Inst. 34(1), 1659–1666 (2013)

    Article  Google Scholar 

  • Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155(1), 247–266 (2008)

    Article  Google Scholar 

  • Garmory, A., Mastorakos, E.: Capturing localised extinction in Sandia flame F with LES–CMC. Proc. Combust. Inst. 33(1), 1673–1680 (2011)

    Article  Google Scholar 

  • Garmory, A., Mastorakos, E.: Numerical simulation of oxy-fuel jet flames using unstructured LES–CMC. Proc. Combust. Inst. 35(2), 1207–1214 (2015)

    Article  Google Scholar 

  • Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Amsterdam (2009)

    Book  MATH  Google Scholar 

  • Ge, Y.P., Cleary, M.J., Klimenko, A.: Sparse-Lagrangian FDF simulations of Sandia flame E with density coupling. Proc. Combust. Inst. 33(1), 1401–1409 (2011)

    Article  Google Scholar 

  • Ge, Y., Cleary, M., Klimenko, A.: A comparative study of Sandia flame series (D–F) using sparse-Lagrangian MMC modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)

    Article  Google Scholar 

  • Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)

    Article  Google Scholar 

  • Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0 (2017). http://www.cantera.org, https://doi.org/10.5281/zenodo.170284

  • Harstad, K., Bellan, J.: A model of reduced kinetics for alkane oxidation using constituents and species: proof of concept for n-heptane. Combust. Flame 157(8), 1594–1609 (2010)

    Article  Google Scholar 

  • Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)

    Article  Google Scholar 

  • Hiremath, V., Pope, S.B.: A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations. Combust. Theor. Model. 17(2), 260–293 (2013)

    Article  MathSciNet  Google Scholar 

  • Hollmann, C., Gutheil, E.: Diffusion flames based on a laminar spray flame library. Combust. Sci. Technol. 135(1–6), 175–192 (1998)

    Article  Google Scholar 

  • Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. 2. Application in les of Sandia flames D and E. Combust. Flame 155(1–2), 90–107 (2008)

  • Issa, R.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  • Jaishree, J., Haworth, D.C.: Comparisons of Lagrangian and Eulerian pdf methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combust. Theor. Model. 16(3), 435–463 (2012)

    Article  MATH  Google Scholar 

  • James, S., Zhu, J., Anand, M.: Large eddy simulations of turbulent flames using the filtered density function model. Proc. Combust. Inst. 31(2), 1737–1745 (2007)

    Article  Google Scholar 

  • Jaravel, T., Riber, E., Cuenot, B., Pepiot, P.: Prediction of flame structure and pollutant formation of Sandia flame D using large eddy simulation with direct integration of chemical kinetics. Combust. Flame 188, 180–198 (2018)

    Article  Google Scholar 

  • Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150(3), 170–187 (2007)

    Article  Google Scholar 

  • Jones, W.P., Prasad, V.N.: Large eddy simulation of the Sandia flame series (D–F) using the Eulerian stochastic field method. Combust. Flame 157(9), 1621–1636 (2010)

    Article  Google Scholar 

  • Kemenov, K.A., Pope, S.B.: Molecular diffusion effects in LES of a piloted methane–air flame. Combust. Flame 158(2), 240–254 (2011)

    Article  Google Scholar 

  • Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30(1), 557–565 (2005)

    Article  Google Scholar 

  • Kim, W.W., Menon, S.: Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Tech. rep, American Institute of Aeronautics and Astronautics, Reno NV (1997)

    Book  Google Scholar 

  • Kim, W.W., Menon, S.: Numerical modeling of turbulent premixed flames in the thin-reaction-zones regime. Combust. Sci. Technol. 160(1), 119–150 (2000)

    Article  Google Scholar 

  • Kim, N., Jung, K., Kim, Y.: Large eddy simulation of piloted turbulent jet flames using the multi-environment pdf model based on the flamelet generated manifold. J. Mech. Sci. Technol. 32, 2399–2406 (2018)

    Article  Google Scholar 

  • Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012)

    Article  Google Scholar 

  • Kourdis, P.D., Bellan, J.: Heavy-alkane oxidation kinetic-mechanism reduction using dominant dynamic variables, self similarity and chemistry tabulation. Combust. Flame 161(5), 1196–1223 (2014)

    Article  Google Scholar 

  • Kourdis, P.D., Bellan, J.: High-pressure reduced-kinetics mechanism for n-hexadecane autoignition and oxidation at constant pressure. Combust. Flame 162(3), 571–579 (2015)

    Article  Google Scholar 

  • Kourdis, P.D., Bellan, J.: Highly reduced species mechanisms for iso-cetane using the local self-similarity tabulation method. Int. J. Chem. Kinet. 48(11), 739–752 (2016)

    Article  Google Scholar 

  • Kourdis, P.D., Bellan, J.: Twenty-species and 15-species chemical kinetic mechanisms for cyclohexane using the local self-similarity tabulation method. Int. J. Chem. Kinet. 52(8), 526–547 (2020)

    Article  Google Scholar 

  • Lawrence Livermore National Laboratory: Mechanisms (2017). Data retrieved from https://combustion.llnl.gov/mechanisms

  • Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulations of the Sandia flame D using the eddy dissipation concept. Flow Turbul. Combust. 93(4), 665–687 (2014)

    Article  Google Scholar 

  • Maas, U., Pope, S.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3), 239–264 (1992)

    Article  Google Scholar 

  • Miles, J.S., Echekki, T.: A one-dimensional turbulence-based closure model for combustion LES. Combust. Sci. Technol. 192(1), 78–111 (2020)

    Article  Google Scholar 

  • Muradoglu, M., Jenny, P., Pope, S., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Mustata, R., Valio, L., Jimnez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145(1–2), 88–104 (2006)

    Article  Google Scholar 

  • Nguyen, P.D., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157(1), 43–61 (2010)

    Article  Google Scholar 

  • Pant, T., Han, C., Wang, H.: Examination of errors of table integration in flamelet/progress variable modeling of a turbulent non-premixed jet flame. Appl. Math. Model. 72, 369–384 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10(3), 319–339 (1984)

    Article  Google Scholar 

  • Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Pitsch, H.: Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29(2), 1971–1978 (2002)

    Article  MathSciNet  Google Scholar 

  • Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)

    Article  MATH  Google Scholar 

  • Pope, S.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1(1), 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Pope, S.B.: PDF methods for turbulent reacting flows (1985)

  • Popov, P.P., Pope, S.B.: Large eddy simulation/probability density function simulations of bluff body stabilized flames. Combust. Flame 161(12), 3100–3133 (2014)

    Article  Google Scholar 

  • Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31(2), 1711–1719 (2007)

    Article  Google Scholar 

  • Raman, V., Pitsch, H., Fox, R.O.: Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combust. Theor. Model. 10(3), 439–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ribert, G., Vervisch, L., Domingo, P., Niu, Y.S.: Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames. Flow Turbul. Combust. 92(1), 175–200 (2014)

    Article  Google Scholar 

  • Robert Barlow, J.F.: Piloted ch4/air flames c, d, e, and f. Tech. rep, Sandia National Laboratories (2007)

    Google Scholar 

  • Salehi, M.M., Bushe, W.K., Shahbazian, N., Groth, C.P.: Modified laminar flamelet presumed probability density function for LES of premixed turbulent combustion. Proc. Combust. Inst. 34(1), 1203–1211 (2013)

    Article  Google Scholar 

  • Sheikhi, M.R.H., Drozda, T.G., Givi, P., Pope, S.B.: Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15(8), 2321–2337 (2003)

    Article  MATH  Google Scholar 

  • Sheikhi, M., Drozda, T., Givi, P., Jaberi, F., Pope, S.: Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D). Proc. Combust. Inst. 30, 549–556 (2005)

    Article  Google Scholar 

  • Smith, G., Golden, D., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., Qin, Z.: Gri-mech 3.0 (2000)

  • Stanković, I.: Modelling of non-premixed turbulent combustion with conditional moment closure (CMC). Eur. Phys. J. E 41(150), 1–15 (2018)

    Google Scholar 

  • Steiner, H., Bushe, W.K.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13(3), 754–769 (2001)

    Article  MATH  Google Scholar 

  • Subramaniam, S., Pope, S.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487–514 (1998)

    Article  Google Scholar 

  • Sundaram, B., Klimenko, A.Y., Cleary, M.J., Ge, Y.: A direct approach to generalised multiple mapping conditioning for selected turbulent diffusion flame cases. Combust. Theor. Model. 20(4), 735–764 (2016)

    Article  MathSciNet  Google Scholar 

  • Turns, S.R.: An Introduction to Combustion: Concepts and Applications. McGraw-Hill (2012)

    Google Scholar 

  • van Oijen, J., de Goey, L.: A numerical study of confined triple flames using a flamelet-generated manifold. Combust. Theor. Model. 8(1), 141–163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • van Oijen, J., Lammers, F., de Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Article  Google Scholar 

  • Vreman, A.: Direct and large-eddy simulation of the compressible turbulent mixing layer. Ph.D. thesis, University of Twente, Netherlands (1995)

  • Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  • Wang, H., Popov, P.P., Pope, S.B.: Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition pdf/fdf transport equations. J. Comput. Phys. 229, 1852–1878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Westbrook, C., Dryer, F.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10, 1–57 (1984)

    Article  Google Scholar 

  • Xu, J., Pope, S.B.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)

    Article  Google Scholar 

  • Yang, S., Wang, X., Huo, H., Sun, W., Yang, V.: An efficient finite-rate chemistry model for a preconditioned compressible flow solver and its comparison with the flamelet/progress-variable model. Combust. Flame 210, 172–182 (2019)

    Article  Google Scholar 

  • Zeldovich, Y., Frank-Kamenetskii, D., Sadovnikov, P.: Oxidation of Nitrogen in Combustion. Publishing House of the Acad of Sciences of USSR (1947)

  • Zhao, W.: Large-eddy simulation of piloted diffusion flames using multi-environment probability density function models. Proc. Combust. Inst. 36(2), 1705–1712 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors like to acknowledge the support from Bogazici University under grant number 11A06D1. Computing resources used in this work were provided by Turkish National Center for High-Performance Computing (UYBHM) under Grant Number 1001202011. Special thanks to Prof. Dr. Kunt Atalk and Prof. Dr. A. Erhan Aksoylu for their support and advice.

Funding

The study has been conducted with support from Bogazici University under grant number 11A06D1. Computing resources used in this work were provided by the National Center for High-Performance Computing of Turkey (UYBHM) under Grant Number 1001202011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Guryuva.

Ethics declarations

Conflict of interest

The current study is based on the publications of Dr. Josette Bellan from Jet Propulsion Laboratory of California Institute of Technology. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryuva, S., Bedir, H. The Utilisation of Reduced Kinetics by Local Self-Similarity Tabulation Approach in 3D Turbulent Reactive Flow Simulation with LES and TPDF. Flow Turbulence Combust 107, 1035–1063 (2021). https://doi.org/10.1007/s10494-021-00260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00260-3

Keywords

Navigation