Skip to main content
Log in

Characters, Weil sums and c-differential uniformity with an application to the perturbed Gold function

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Building upon the observation that the newly defined Ellingsen, et al. (2020) concept of c-differential uniformity is not invariant under EA or CCZ-equivalence Hasan et al. (2021), we showed in Stănică and Geary (2021) that adding some appropriate linearized monomials increases the c-differential uniformity of the inverse function, significantly, for some c. We continue that investigation here. First, by analyzing the involved equations, we find bounds for the uniformity of the Gold function perturbed by a single monomial, exhibiting the discrepancy we previously observed on the inverse function. Secondly, to treat the general case of perturbations via any linearized polynomial, we use characters in the finite field to express all entries in the c-Differential Distribution Table (DDT) of an (n, n)-function on the finite field \({\mathbb {F}}_{p^{n}}\), and further, we use that method to find explicit expressions for all entries of the c-DDT of the perturbed Gold function (via an arbitrary linearized polynomial).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli, D., Timpanella, M.: On a generalization of planar functions, J. Algebr. Comb. https://doi.org/10.1007/s10801-019-00899-2 (2019)

  2. Bluher, A.W.: On xq+ 1+ax+b. Finite Fields Appl. 10(3), 285–305 (2004)

    Article  MathSciNet  Google Scholar 

  3. Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative Differentials. In: Daemen, J., Rijmen, V. (eds.) Fast Software Encryption, FSE 2002, LNCS 2365, pp 17–33. Springer, Berlin (2002)

  4. Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer-Verlag, Berlin (2014)

    Book  Google Scholar 

  5. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp 257–397. Cambridge Univ. Press, Cambridge (2010)

  6. Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp 398–472. Cambridge Univ. Press, Cambridge (2010)

  7. Coulter, R.S.: Explicit evaluations of some Weil sums. Acta Arithmetica 83, 241–251 (1998)

    Article  MathSciNet  Google Scholar 

  8. Coulter, R.S.: Further evaluations of Weil sums. Acta Arithmetica 86, 217–226 (1998)

    Article  MathSciNet  Google Scholar 

  9. Coulter, R.S.: On the evaluation of a class of Weil sums in characteristic 2. New Zealand J. Math. 28, 171–184 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Coulter, R.S., Henderson, M.: A note on the roots of trinomials over a finite field. Bull. Austral. Math. Soc. 69, 429–432 (2004)

    Article  MathSciNet  Google Scholar 

  11. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, Ed. 2. Academic Press, San Diego (2017)

    MATH  Google Scholar 

  12. Ellingsen, P., Felke, P., Riera, C., Stănică, P., Tkachenko, A.: C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2020.2971988 (2020)

  13. Hasan, S.U., Pal, M., Riera, C., Stănică, P.: On the c-differential uniformity of certain maps over finite fields, Des. Codes Cryptogr., https://doi.org/10.1007/s10623-020-00812-0 (2021)

  14. Lidl, R., Niederreiter, H.: FiniteFields, Ed. 2, vol. 20. Cambridge Univ. Press, Cambridge (1997). Encycl. Math Appl.

    Google Scholar 

  15. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer Verlag, Berlin (2016)

    Book  Google Scholar 

  16. Riera, C., Stănică, P.: Investigations on c-(almost) perfect nonlinear functions. arXiv:2004.02245 (2020)

  17. Stănică, P.: Investigations on c-boomerang uniformity and perfect nonlinearity. arXiv:2004.11859 (2020)

  18. Stănică, P.: Using double Weil sums in finding the Boomerang and the c-Boomerang Connectivity Table for monomial functions on finite fields. arXiv:2007.09553 (2020)

  19. Stănică, P., Geary, A.: The c-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun. https://doi.org/10.1007/s12095-020-00466-8 (2021)

  20. Tokareva, N.: Bent Functions, Results and Applications to Cryptography. Academic Press, San Diego (2015)

    MATH  Google Scholar 

  21. Yan, H., Mesnager, S., Zhou, Z.: Power functions over finite fields with low c-differential uniformity. arXiv:2003.13019

  22. Zheng, Y., Wang, Q., Wei, W.: On inverses of permutation polynomials of small degree over finite fields. IEEE Trans. Inf. Theory 66(2), 914–922 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelimon Stănică.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Boolean Functions and Their Applications V

Guest Editors: Lilya Budaghyan, Claude Carlet, Tor Helleseth and Kaisa Nyberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stănică, P., Riera, C. & Tkachenko, A. Characters, Weil sums and c-differential uniformity with an application to the perturbed Gold function. Cryptogr. Commun. 13, 891–907 (2021). https://doi.org/10.1007/s12095-021-00485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00485-z

Keywords

Mathematics Subject Classification (2010)

Navigation