Skip to main content
Log in

Semi-algebraic Approximation Using Christoffel–Darboux Kernel

  • Published:
Constructive Approximation Aims and scope

Abstract

We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A semi-algebraic function is a function whose graph is semi-algebraic, i.e., defined with finitely many polynomial inequalities.

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  2. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22(103), 565–578 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Batenkov, D., Yomdin, Y.: Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comput. 81(277), 277–318 (2012)

    Article  MathSciNet  Google Scholar 

  4. Batenkov, D.: Complete algebraic reconstruction of piecewise-smooth functions from Fourier data. Math. Comput. 84(295), 2329–2350 (2015)

    Article  MathSciNet  Google Scholar 

  5. Coste, M.: An introduction to semialgebraic geometry. RAAG Netw. Sch. 145, 30 (2002)

    Google Scholar 

  6. De Marchi, S., Sommariva, A., Vianello, M.: Multivariate Christoffel functions and hyperinterpolation. Dolomites Res. Notes Approx. 7, 26–33 (2014)

  7. De Vito, E., Rosasco, L., Toigo, A.: Learning sets with separating kernels. Appl. Comput. Harmon. Anal. 37(2), 185–217 (2014)

    Article  MathSciNet  Google Scholar 

  8. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88(3), 223–270 (1985)

    Article  MathSciNet  Google Scholar 

  9. Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  10. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  11. Eckhoff, K.S.: Accurate and efficient reconstruction of discontinuous functions from truncated series expansions. Math. Comput. 61(204), 745–763 (1993)

    Article  MathSciNet  Google Scholar 

  12. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, London (1996)

    MATH  Google Scholar 

  14. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  Google Scholar 

  15. Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math. 222(4), 1405–1460 (2009)

    Article  MathSciNet  Google Scholar 

  16. Helmes, K., Röhl, S., Stockbridge, R.H.: Computing moments of the exit time distribution for Markov processes by linear programming. Oper. Res. 49, 516–530 (2001)

    Article  MathSciNet  Google Scholar 

  17. Hernández-Hernández, D., Hernández-Lerma, O., Taksar, M.: The linear programming approach to deterministic optimal control problems. Appl. Math. 24, 17–33 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Hernández-Lerma, O., Lasserre, J.B.: The Linear Programming Approach. Handbook of Markov Decision Processes, pp. 377–407. Springer, Boston (2002)

    Book  Google Scholar 

  19. Klep, I., Povh, J., Volčič, J.: Minimizer extraction in polynomial optimization is robust. SIAM J. Optim. 28(4), 3177–3207 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kroó, A., Lubinsky, D.S.: Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Can. J. Math. 65(3), 600–620 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  22. Lasserre, J.B.: The moment-SOS hierarchy. Proc. Int. Congress Math. (ICM) 4, 3773–3794 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008)

    Article  MathSciNet  Google Scholar 

  24. Lasserre, J.B., Prieto-Rumeau, T., Zervos, M.: Pricing a class of exotic options via moments and SDP relaxations. Math. Finance 16, 469–494 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lasserre, J.B., Pauwels, E.: The empirical Christoffel function with applications in data analysis. Adv. Comput. Math. 45, 1439–1468 (2019)

    Article  MathSciNet  Google Scholar 

  26. Marx, S., Weisser, T., Henrion, D., Lasserre, J.B.: A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Math. Control. Related Fields 10, 113–140 (2019)

    Article  MathSciNet  Google Scholar 

  27. Máté, A., Nevai, P.G.: Bernstein’s inequality in \(L^p\) for \(0<p<1\) and \((C,1)\) bounds for orthogonal polynomials. Ann. Math. 111, 145–154 (1980)

    Article  MathSciNet  Google Scholar 

  28. Nevai, P.G., Freud, Géza: orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48(1), 3–167 (1986)

    Article  MathSciNet  Google Scholar 

  29. Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. J. Complex. 23(1), 135–150 (2007)

    Article  MathSciNet  Google Scholar 

  30. Pachón, R., Platte, R.B., Trefethen, L.N.: Piecewise-smooth chebfuns. IMA J. Numer. Anal. 30(4), 898–916 (2010)

    Article  MathSciNet  Google Scholar 

  31. Lasserre, J.B., Pauwels, E.: Sorting out typicality with the inverse moment matrix sos polynomial. In: Advances in Neural Information Processing Systems, pp. 190–198 (2016)

  32. Pauwels, E., Putinar, M., Lasserre, J.B.: Data analysis from empirical moments and the Christoffel function. Found. Comput. Math. (to appear) (2020)

  33. Royden, H., Fitzpatrick, P.: Real Analysis. 4th Edition, Pearson Education, (2010)

  34. Santambrogio, F.: Optimal Transport for Applied Mathematicians-Calculus of Variations, PDEs, and Modeling. Birkhäuser, Basel (2015)

    Book  Google Scholar 

  35. Silvestre, L.: Oscillation properties of scalar conservation laws. Commun. Pure Appl. Math. 72(6), 1321–1348 (2019)

    Article  MathSciNet  Google Scholar 

  36. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  37. Stockbridge, R.H.: Discussion of dynamic programming and linear programming approaches to stochastic control and optimal stopping in continuous time. Metrika 77(1), 137–162 (2014)

    Article  MathSciNet  Google Scholar 

  38. Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence (1939)

    MATH  Google Scholar 

  39. Vinter, R.: Convex duality and nonlinear optimal control. SIAM J. Control. Optim. 31(2), 518–538 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Quentin Vila for his technical input on discontinuous solutions of PDEs and to Milan Korda, Victor Magron and Matteo Tacchi for interesting discussions. This work was partly funded by the ERC Advanced Grant Taming and was also conducted in the framework of the regional program “Atlanstic 2020, Research, Education and Innovation in Pays de la Loire”, supported by the French Region Pays de la Loire and the European Regional Development Fund. E. Pauwels and J.B. Lasserre are also partially supported by the AI Interdisciplinary Institute ANITI funding through the French program “Investing for the Future PIA3”, under the Grant agreement number ANR-19-PI3A-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swann Marx.

Additional information

Communicated by Remi Gribonval.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, S., Pauwels, E., Weisser, T. et al. Semi-algebraic Approximation Using Christoffel–Darboux Kernel. Constr Approx 54, 391–429 (2021). https://doi.org/10.1007/s00365-021-09535-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-021-09535-4

Keywords

Mathematics Subject Classification

Navigation