Skip to main content
Log in

Analytical Investigation of the Chaotic Dynamics of a Two-Dimensional Lotka–Volterra System with a Seasonality Factor

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The dynamics of the classical biological Lotka–Volterra system with a seasonality factor is investigated analytically. The original model is described by a simple Hamiltonian. To reveal the chaotic behavior in the system, the Hamiltonian is represented by a sum of a Hamiltonian that is independent of time and a number of resonances. The investigation of the interaction of these resonances using Chirikov’s resonance overlap method makes it possible to find an analytical criterion in terms of the critical values of the seasonality amplitudes under which the original system goes to chaos. The results of the study show that in the presence of a periodic perturbation (the seasonality factor in the case under consideration) the system with two dependent variables demonstrates chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Volterra, “Fluctuations in the abundance of a species considered mathematically,” Nature 118, 558–560 (1926). https://doi.org/10.1038/118558a0

    Article  MATH  Google Scholar 

  2. V. Volterra, “Variazioni e fluttuazioni dei numero d’individui in specie animali conviventi,” Memorie della Regia Accademia Nazionale dei Lincei 2, 31–113 (1926). English translation in R. N. Chapman, Animal Ecology (McGraw–Hill, New York, 1931).

    Google Scholar 

  3. V. Volterra, Lessons on the Mathematical Theory of Struggle for Life (Gauthier-Villars, Paris, 1931).

    Google Scholar 

  4. A. J. Lotka, Elements of Physical Biology (Williams and Wilkins, Baltimore, 1925).

    MATH  Google Scholar 

  5. B. V. Chirikov, “A universal instability of many-dimensional oscillator systems,” Phys. Rep. 52, 263–379 (1979).

    Article  MathSciNet  Google Scholar 

  6. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vols. 1–3 (Gauthier-Villars, Paris, 1892).

    MATH  Google Scholar 

  7. H. Poincaré, Leçons de mécanique céleste (Gauthier-Villars, Paris, 1905).

    MATH  Google Scholar 

  8. J. S. Hadamard, “Sur le billard non-Euclidien,” Soc. Sci. Bordeaux, Procès Verbaux (1898).

    Google Scholar 

  9. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20 (2), 130–141 (1963). https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    Article  MathSciNet  MATH  Google Scholar 

  10. E. N. Lorenz, “Predictability: Does the flap of a butterfly’s wings in Brazil set off a Tornado in Texas?” Am. Assoc. Advancement Sci. (1972). http://gymportalen.dk/sites/lru.dk/files/lru/132_kap6_lorenz_artikel_the_butterfly_effect.pdf

  11. M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys. 19, 25–52 (1978). https://doi.org/10.1007/BF01020332

    Article  MathSciNet  MATH  Google Scholar 

  12. M. J. Feigenbaum, “The universal metric properties of nonlinear transformations,” J. Stat. Phys. 21, 669–706 (1979). https://doi.org/10.1007/BF01107909

    Article  MathSciNet  MATH  Google Scholar 

  13. M. J. Feigenbaum, J. M. Greene, R. S. MacKay, and F. Vivaldi, “Universal behaviour in families of area-preserving maps,” Physica D: Nonlinear Phenomena 3, 468–486 (1981). https://doi.org/10.1016/0167-2789(81)90034-8

    Article  MathSciNet  MATH  Google Scholar 

  14. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

    MATH  Google Scholar 

  15. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990). https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  MATH  Google Scholar 

  16. L. M. Pecora and T. L., Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990). https://doi.org/10.1103/PhysRevLett.64.821

    Article  MathSciNet  MATH  Google Scholar 

  17. M. P. Fishman and D. A. Egolf. “Revealing the building block of spatiotemporal chaos: Deviations from extensivity,” Phys. Rev. Lett. 96 (5), (2006), Article ID 054103. https://doi.org/10.1103/PhysRevLett.96.054103

    Article  Google Scholar 

  18. D. R. Spiegel and E. R. Johnson, “Experimental investigation of the transition to spatiotemporal chaos with a system-size control parameter,” Res. Lett. Phys. (2008), Article ID 891324. https://doi.org/10.1155/2008/891324

  19. E. Benincà, B. Ballantine, S. P. Ellner, and J. Huisman, “Species fluctuations sustained by a cyclic succession at the edge of chaos, Proc. Nat. Acad. Sci. USA 112, 6389–6394 (2015). https://doi.org/10.1073/pnas.1421968112

    Article  Google Scholar 

  20. C. F. Clements and A. Ozgul, “Indicators of transitions in biological systems,” Ecol. Lett. 21, 905–919 (2018). https://doi.org/10.1111/ele.12948

    Article  Google Scholar 

  21. M. Scheffer, J. Bascompte, W. Brock, et al. “Early-warning signals for critical transitions,” Nature 461, 53–59 (2009). https://doi.org/10.1038/nature08227

    Article  Google Scholar 

  22. E. Gopalakrishnan et al. “Early warning signals for critical transitions a thermoacoustic system,” Sci. Rep. 6, 1–10 (2016), Article number: 35310. https://doi.org/10.1038/srep35310

  23. M. C. Boerlijst, T. Oudman, and A. M. de Roos, “Catastrophic collapse can occur without early warning: Examples of silent catastrophes in structured ecological models,” PLOS ONE 8 (1), 1–6 (2013). https://doi.org/10.1371/journal.pone.0062033

    Article  Google Scholar 

  24. T. Peacock and G. Haller, “Lagrangian coherent structures. The hidden skeleton of fluid flows,” Phys. Today. 41 (2013).

  25. M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swinney, “Uncovering the Lagrangian skeleton of turbulence,” Phys. Rev. Lett. 98, 144502-1–144502-4 (2007). https://doi.org/10.1103/PhysRevLett.98.144502

    Article  Google Scholar 

  26. M. V. Falessi, F. Pegoraro, and T. J. Schep, “Lagrangian coherent structures and plasma transport processes,” J. Plasma Phys. 81 (5), (2015). https://doi.org/10.1017/S0022377815000690

  27. E. T. Kai, V. Rossi, J. Sudre, H. Weimerskirch, C. Lopez, E. Hernandez-Garcia, F. Marsac, and V. Garcon, “Top marine predators track Lagrangian coherent structures,” Proc. Nat. Acad. Sci. USA 106, 8245–8250 (2009).

    Article  Google Scholar 

  28. H. Zhu, S. C. Chapman, and R. O. Dendy, “Robustness of predator-prey models for confinement regime transitions in fusion plasmas,” Phys. Plasma 20, 042302-1–042302-11 (2013). https://doi.org/10.1063/1.4800009

    Article  Google Scholar 

  29. E. Aydiner, “Chaotic universe model: Lotka-Volterra dynamics of the universe evolution.” (2017). arXiv: 1610.07338v3 [gr-qc]

  30. P. Gatabazi, J. C. Mba, and E. Pindza, “Fractional gray Lotka-Volterra models with application to cryptocurrencies adoption,” Chaos 29 (7), 10 (2019). https://doi.org/10.1063/1.5096836

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Arneodo, P. Coullet P., J. Peyraud, et al. “Strange attractors in Volterra equations for species in competition,” J. Math. Biol. 14 (2), 153–157 (1982). https://doi.org/10.1007/BF01832841

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Arneodo, P. Coullet, and C. Tresser, “Occurrence of strange attractors in three-dimensional Volterra equations,” Phys. Lett. A 79 (4), 259–263 (1980). https://doi.org/10.1016/0375-9601(80)90342-4

    Article  MathSciNet  Google Scholar 

  33. R. Wang and D. Xiao, “Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka–Volterra system,” Nonlinear Dyn. 59, 411–422 (2010). https://doi.org/10.1007/s11071-009-9547-3

    Article  MathSciNet  MATH  Google Scholar 

  34. J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and J. C. Sprott, “Chaos in low-dimensional Lotka–Volterra models of competition,” Nonlinearity 19, 2391–2404 (2006). https://doi.org/10.1088/0951-7715/19/10/006

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Kozlov and S. Vakulenko, “On chaos in Lotka–Volterra systems: An analytical approach,” Nonlinearity 26, 2299–2314 (2013). https://doi.org/10.1088/0951-7715/26/8/2299

    Article  MathSciNet  MATH  Google Scholar 

  36. J. R. Christie, K. Gopalsamy, and J. Li, “Chaos in perturbed Lotka–Volterra systems,” Austr. New Zealand Industr. Appl. Math. J. 42, 399–412 (2001). https://doi.org/10.1017/S1446181100012025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bibik.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibik, Y.V. Analytical Investigation of the Chaotic Dynamics of a Two-Dimensional Lotka–Volterra System with a Seasonality Factor. Comput. Math. and Math. Phys. 61, 226–241 (2021). https://doi.org/10.1134/S0965542521010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521010024

Keywords:

Navigation