Skip to main content
Log in

Averaging Principle and Normal Deviations for Multiscale Stochastic Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior for an inhomogeneous multiscale stochastic dynamical system with non-smooth coefficients. Depending on the averaging regime and the homogenization regime, two strong convergences in the averaging principle of functional law of large numbers type are established. Then we consider the small fluctuations of the system around its average. Nine cases of functional central limit type theorems are obtained. In particular, even though the averaged equation for the original system is the same, the corresponding homogenization limit for the normal deviation can be quite different due to the difference in the interactions between the fast scales and the deviation scales. We provide quite intuitive explanations for each case. Furthermore, sharp rates both for the strong convergences and the functional central limit theorems are obtained, and these convergences are shown to rely only on the regularity of the coefficients of the system with respect to the slow variable, and do not depend on their regularity with respect to the fast variable, which coincide with the intuition since in the limit equations the fast component has been totally averaged or homogenized out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, L.: Hasslemann’s program revisited: The analysis of stochasticity in deterministic climate models. Stochastic Climate Models, In: Progress in Probability book series, Springer 49, 141–157 (2001)

  2. Bakhtin, V., Kifer, Y.: Diffusion approximation for slow motion in fully coupled averaging. Probab. Theory Related Fields 129, 157–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakhvalov, N.S.: Averaging of partial differential equations with rapidly oscillating coefficients. Sov. Math. Dokl. 16, 351–355 (1975)

    MATH  Google Scholar 

  4. Ball, K., Kurtz, T.G., Rempala, G., Popovic, L.: Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Prob. 16, 1925–1961 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bouchet, F., Grafke, T., Tangarife, T., Vanden-Eijnden, E.: Large deviations in fast-slow systems. J. Stat. Phys. 162, 793–812 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bréhier, C.E.: Analysis of an HMM time-discretization scheme for a system of stochastic PDEs. SIAM J. Numer. Anal. 51, 1185–1210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bréhier, C.E.: Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component. Stoch. Proc. Appl., https://doi.org/10.1016/j.spa.2019.09.015

  8. Budhiraja, A., Dupuis, P., Ganguly, A.: Large deviations for small noise diffusions in a fast Markovian environment. Electron. J. Probab. 23, 1–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cattiaux, P., Chafaï, D., Guillin, A.: Central limit theorems for additive functionals of ergodic Markov diffusions processes. ALEA, Lat. Am. J. Probab. Math. Stat. 9, 337–382 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cerrai, S.: Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation. J. Math. Pures Appl. 91, 614–647 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction-diffusion equations. Probab. Theory Related Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cerrai, S., Lunardi, A.: Averaging principle for non-autonomous slow-fast systems of stochastic reaction-diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49, 2843–2884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chevyrev, I., Friz, P., Korepanov, A., Melbourne, I.: Superdiffusive limits for deterministic fast-slow dynamical systems. arXiv:1907.04825v1

  15. De Simoi, J., Liverani, C.: Limit theorems for fast-slow partially hyperbolic systems. Invent. Math. 213, 811–1016 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Dolgopyat, D., Liverani, C.: Energy transfer in a fast-slow Hamiltonian system. Commun. Math. Phys. 308, 201–225 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Dupuis, P., Spiliopoulos, K.: Large deviations for multiscale problems via weak convergence methods. Stoch. Proc. Appl. 122, 1947–1987 (2012)

    Article  MATH  Google Scholar 

  18. Weinan, E., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58, 1544–1585 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fedrizzi, E., Flandoli, F.: Pathwise uniqueness and continuous dependence for SDEs with non-regular drift. Stochastics 83, 241–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, J., Fouque, J.P., Kumar, R.: Small-time asymptotics for fast mean reverting stochastic volatility models. Ann. Appl. Probab. 22(4), 1541–1575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flandoli, F., Gubinelli, M., Priola, E.: Remarks on the stochastic transport equation with Hölder drift. Rend. Semin. Mat. 70, 53–73 (2013)

    MATH  Google Scholar 

  22. Friedlin, M.: Functional Integration and Partial Differential Equations. Princeton University Press, Princeton, N.J. (1985)

    Google Scholar 

  23. Gao, H., Duan, J.: Dynamics of quasi-geostrophic fluid motion with rapidly oscillating Coriolis force. Nonl. Anal.: Real World Appl. 4, 127–138 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gonzales-Gargate, I.I., Ruffino, P.R.: An averaging principle for diffusions in foliated spaces. Ann. Probab. 44, 567–588 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guillin, A.: Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging. Stoch. Proc. Appl. 92, 287–313 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guillin, A.: Averaging principle of SDE with small diffusion: moderate deviations. Ann. Probab. 31(1), 413–443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hairer, M., Li, X.M.: Averaging dynamics driven by fractional Brownian motion. arXiv:1902.11251

  28. Hairer, M., Pardoux, E.: Homogenization of periodic linear degenerate PDEs. J. Funct. Anal. 255, 2462–2487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hairer, M., Pardoux, E.: Fluctuations around a homogenised semilinear random PDE. arXiv:1911.02865

  30. Hu, W., Li, C.J.: A convergence analysis of the perturbed compositional gradient flow: averaging principle and normal deviations. Discrete Cont. Dynam. Syst.-A 38(10), 4951–4977 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kang, H.W., Kurtz, T.G.: Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23(2), 529–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kelly, D., Vanden-Eijnden, E.: Fluctuations in the heterogeneous multiscale methods for fast-slow systems. Res. Math. Sci. 4, (2017). https://doi.org/10.1186/s40687-017-0112-2

  33. Khasminskii, R.Z.: On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11, 211–228 (1966)

    Article  MathSciNet  Google Scholar 

  34. Khasminskii, R.Z., Yin, G.: On averaging principles: an asymptotic expansion approach. SIAM J. Math. Anal. 35, 1534–1560 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Khasminskii, R.Z., Yin, G.: Limit behavior of two-time-scale diffusions revised. J. Differ. Equ. 212, 85–113 (2005)

    Article  MATH  ADS  Google Scholar 

  36. Kifer, Y.: Averaging in dynamical systems and large deviations. Invent. Math. 110, 337–370 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Kifer, Y.: Averaging and climate models. Stochastic Climate Models, Progress in Probability book series, Springer 49, 171–188 (2001)

  38. Kifer, Y.: \(L^2\) diffusion approximation for slow motion in averaging. Stoch. Dyna. 3, 213–246 (2003)

    Article  MATH  Google Scholar 

  39. Kifer, Y., Varadhan, S.R.S.: Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. 42(2), 649–688 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Konda, V.R., Tsitsiklis, J.N.: Convergence rate of linear two-time-scale stochastic approximation. Ann. Appl. Probab. 14, 796–819 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kosygina, E., Rezakhanlou, F., Varadhan, S.R.S.: Stochastic homogenization of Hamilton–Jacobi–Bellman equations. Commun. Pure Appl. Math. 59, 1489–1521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuehn, C.: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol. 191. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  43. Lady\(\breve{z}\)enskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Translated from Russian by S. Smmith. Amercian Mathematical Society, (1968)

  44. Li, X.M.: An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity 21, 803–822 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Majda, A., Timofeyev, I., Vanden-Eijnden, E.: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Morse, M.R., Spiliopoulos, K.: Moderate deviations principle for systems of slow-fast diffusions. Asymptotic Anal. 105, 97–135 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pakdaman, K., Thieullen, M., Wainrib, G.: Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic Markov processes. Stoch. Proc. Appl. 122, 2292–2318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. Proceedings of the: Duke University Conference on Turbulence, p. 1976. NC, Durham (1976)

  49. Pardoux, E.: Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: a probabilistic approach. J. Func. Anal. 167, 498–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 1061–1085 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation. Ann. Probab. 31, 1166–1192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pavliotis, G.A., Stuart, A.M.: Multiscale methods: averaging and homogenization. Texts Appl. Math., 53, Springer, New York, (2008)

  53. Puhalskii, A.A.: On large deviations of coupled diffusions with time scale separation. Ann. Probab. 44, 3111–3186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Röckner, M., Sun, X., Xie, L.: Strong and weak convergence in averaging principle for SDEs with Hölder coefficients. arXiv:1907.09256

  55. Röckner, M., Xie, L.: Diffusion approximation for fully coupled stochastic differential equations. To appear in Ann. Probab., arXiv:2008.04817

  56. Simon, H.A., Ando, A.: Aggregation of variables in dynamical systems. Econometrica 29, 111–138 (1961)

    Article  MATH  Google Scholar 

  57. Spiliopoulos, K.: Fluctuation analysis and short time asymptotics for multiple scales diffusion processes. Stoch. Dyna. 14, 1350026 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Spiliopoulos, K.: Quenched large deviations for multiscale diffusion processes in random environments. Electron. J. Probab. 20(15), 1–29 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Veretennikov, AYu.: On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24, 354–366 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  60. Veretennikov, AYu.: On the averaging principle for systems of stochastic differential equations. Math. USSR Sborn. 69, 271–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Veretennikov, A.: On large deviations in the averaging principle for SDEs with a full dependence. Ann. Probab. 27, 284–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Veretennikov, AYu.: On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70, 115–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  64. Zhang, X.: Stochastic homemomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron. J. Probab. 16, 1096–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjie Xie.

Additional information

Communicated by M. Hairer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the DFG through CRC 1283, the Alexander-von-Humboldt foundation and NSFC (Nos. 12090011, 12071186, 11931004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röckner, M., Xie, L. Averaging Principle and Normal Deviations for Multiscale Stochastic Systems. Commun. Math. Phys. 383, 1889–1937 (2021). https://doi.org/10.1007/s00220-021-04069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04069-z

Navigation