Skip to main content

Advertisement

Log in

Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The characteristics of tropical cyclone (TC) activity over five TC basins lying within four Coordinated Regional Downscaling Experiment (CORDEX) domains are examined for present and future climate conditions using a new ensemble of simulations completed as part of the CORDEX-CORE initiative with the regional climate model RegCM4. The simulations are conducted at a 25 km horizontal grid spacing and are driven by three CMIP5 general circulation models (GCMs) under two Representative Concentration Pathways (RCP2.6 and RCP8.5). The RegCM4 captures most features of the observed TC climatology, except for the TC intensity, which is thus statistically adjusted using a bias correction procedure to account for the effect of the coarse model resolution. The RegCM4 exhibits an improved simulation of several TC statistics compared to the driving GCMs, over most basins analyzed. In future climate conditions we find significant increases in TC frequency over the North Indian Ocean, the Northwest Pacific and Eastern Pacific regions, which are consistent with an increase in mid-tropospheric relative humidity. The North Atlantic and Australasia regions show a decrease in TC frequency, mostly associated with an increase in wind shear. We also find a consistent increase in future storm rainfall rates associated with TCs and in the frequency of the most intense TCs over most domains. Our study shows robust responses often, but not always, in line with previous studies, still implying the presence of significant uncertainties in the projection of TC characteristics, which need to be addressed using large ensembles of simulations with high-resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bacmeister JT, Reed KA, Hannay C, Lawrence P, Bates S, Truesdale JE, Rosenbloom N, Levy M (2018) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Change 146:547–560. https://doi.org/10.1007/s10584-016-1750-x

    Article  Google Scholar 

  • Barlow M (2011) Influence of hurricane-related activity on North American extreme precipitation. Geophys Res Lett 38:L04705. https://doi.org/10.1029/2010GL046258

    Article  Google Scholar 

  • Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017a) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21:589–615

    Article  Google Scholar 

  • Beck HE et al (2017b) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21:6201–6217

    Article  Google Scholar 

  • Beck HE et al (2019) Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol Earth Syst Sc 23:207–224. https://doi.org/10.5194/hess-23-207-2019

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo J-J, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus 59A:539–561

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. https://doi.org/10.1175/2008jcli2678.1

    Article  Google Scholar 

  • Bhatia K, Vecchi G, Murakami H, Underwood S, Kossin J (2018) Projected response of tropical cyclone intensity and intensification in a global climate model. J Clim 31:8281–8303. https://doi.org/10.1175/JCLI-D-17-0898.1

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22:3422–3448

    Article  Google Scholar 

  • Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26:9880–9902. https://doi.org/10.1175/JCLI-D-12-00549.1

    Article  Google Scholar 

  • Camargo SJ, Wing AA (2016) Tropical cyclones in climate models. WIREs Clim Change 7:211–237. https://doi.org/10.1002/wcc373

    Article  Google Scholar 

  • Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834

    Article  Google Scholar 

  • Cavazos T, Turrent C, Lettenmaier DP (2008) Extreme precipitation trends associated with tropical cyclones in the core of the North American monsoon. Geophys Res Lett 35:L21703

    Article  Google Scholar 

  • Chavas DR, Emanuel KA (2010) A QuikSCAT climatology of tropical cyclone size. Geophys Res Lett 37:L18816. https://doi.org/10.1029/2010GL044558

    Article  Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, p 1535

    Google Scholar 

  • Czajkowski J, Villarini G, Michel-Kerjan E, Smith JA (2013) Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ Res Lett 8:044056. https://doi.org/10.1088/1748-9326/8/4/044056

    Article  Google Scholar 

  • Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Guliani G, Coppola E (2014) Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim Change 125:79–94. https://doi.org/10.1007/s10584-014-1155-7

    Article  Google Scholar 

  • Dominguez C, Magaña V (2018) The role of tropical cyclones in precipitation over the tropical and subtropical North America. Front Earth Sci 6:19. https://doi.org/10.3389/feart.2018.00019

    Article  Google Scholar 

  • Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu UU (2014) Assessment of CMIP5 global model simulations over the sub-set of CORDEX domains used in the Phase I CREMA Experiment. Clim Change. https://doi.org/10.1007/S10584-013-0935-9

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Google Scholar 

  • Emanuel KA (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969–3976

    Article  Google Scholar 

  • Emanuel KA, Nolan D (2004) Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on hurricanes and tropical meteorology, Miami, FL, Amer Meteor Soc 10(A.2). Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm

  • Emanuel KA, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Article  Google Scholar 

  • Emanuel KA, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteor Soc 89:347–367

    Article  Google Scholar 

  • Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Weather Rev 129:2249–2269

    Article  Google Scholar 

  • Franklin JL, Black ML, Valde K (2003) GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast 18:32–44

    Article  Google Scholar 

  • Fuentes-Franco R, Giorgi F, Coppola E, Zimmermann K (2017) Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Clim Dyn 49(1–2):547–561

    Article  Google Scholar 

  • Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Res 138:688–704

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos 124:5696–5723

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Gleixner S, Keenlyside N, Hodges KI et al (2014) An inter-hemispheric comparison of the tropical storm response to global warming. Clim Dyn 42:2147–2157. https://doi.org/10.1007/s00382-013-1914-6

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer D (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). Technical report NCAR/TN-398 + STR, National Center for Atmospheric Research

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Gupta S (2010) Synthesis report on ten ASEAN countries disaster risks assessment: ASEAN Disaster Risk Management Initiative. https://doi.org/10.13140/RG.2.2.32014.36160

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  • Hodges KI (1994) A general method for tracking analysis and its application to meteorological data. Mon Weather Rev 122:2573–2586

    Article  Google Scholar 

  • Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123:3458–3465

    Article  Google Scholar 

  • Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373

    Article  Google Scholar 

  • Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hsu WC, Patricola CM, Chang P (2019) The impact of climate model sea surface temperature biases on tropical cyclone simulations. Clim Dyn 53:173. https://doi.org/10.1007/s00382-018-4577-5

    Article  Google Scholar 

  • Jin C-S, Cha D-H, Lee D-K, Suh M-S, Hong S-Y, Kang H-S, Ho C-H (2016) Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim Dyn 47:765–778. https://doi.org/10.1007/s00382-015-2869-6

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kain J-S (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Kain J-S, Fritsch J-M (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Khouakhi A, Villarini G, Vecchi GA (2017) Contribution of tropical cyclones to rainfall at the global scale. J Clim 30:359–372. https://doi.org/10.1175/JCLI-D-16-0298.1

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone best track data. Bull Am Meteor Soc 91:363–376. https://doi.org/10.1175/2009BAMS2755.1

    Article  Google Scholar 

  • Knapp KR, Diamond HJ, Kossin JP, Kruk MC, Schreck CJ (2018) International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NOAA National Centers for Environmental Information. https://doi.org/10.25921/82ty-9e16. Accessed 10/09/2019

  • Knutson TR, McBride JL, Chan JCL, Emanuel KA, Holland GJ, Landsea C, Held IM, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163. https://doi.org/10.1038/ngeo779

    Article  Google Scholar 

  • Knutson TR, Sirutis JJ, Vecchi GA, Garner S, Zhao M, Kim H-S, Bender M, Tuleya RE, Held IM, Villarini G (2013) Dynamical downscaling projections of late 21st century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J Clim 26:6591–6617. https://doi.org/10.1175/JCLI-D-12-00539.1

    Article  Google Scholar 

  • Knutson TR et al (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28(18):7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1

    Article  Google Scholar 

  • Knutson T, Camargo SJ, Chan JC, Emanuel K, Ho C, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L (2019) Tropical cyclones and climate change assessment: Part I: detection and attribution. Bull Am Meteor Soc 100:1987–2007. https://doi.org/10.1175/BAMS-D-18-0189.1

    Article  Google Scholar 

  • Knutson T, Camargo SJ, Chan JC, Emanuel K, Ho C, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L (2020) Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull Am Meteor Soc. https://doi.org/10.1175/BAMS-D-18-0194.1

    Article  Google Scholar 

  • Kruk MC, Knapp KR, Levinson DH (2010) A technique for combining global tropical cyclone best track data. J Atmos Oceanic Technol 27:680–692. https://doi.org/10.1175/2009JTECHA1267.1

    Article  Google Scholar 

  • Lavender SL, Walsh KJE (2011) Dynamically downscaled simulations of Australian region tropical cyclones in current and future climates. Geophys Res Lett. https://doi.org/10.1029/2011GL047499

    Article  Google Scholar 

  • Li T, Kwon M, Zhao M, Kug J-S, Luo J-J, Yu W (2010) Global warming shifts Pacific tropical cyclone location. Geophys Res Lett 37:L21804

    Google Scholar 

  • Liu M, Vecchi GA, Smith JA, Murakami H (2018) Projection of landfalling-tropical cyclone rainfall in the Eastern United States under anthropogenic warming. J Clim 31:7269–7286. https://doi.org/10.1175/JCLI-D-17-0747.1

    Article  Google Scholar 

  • Liu J, Shangguan D, Liu S, Ding Y, Wang S, Wang X (2019) Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmos Res 230:104634

    Article  Google Scholar 

  • Manganello JV, Hodges KI, Kinter JL, Cash BA, Marx L, Jung T, Achuthavarier D, Adams JM, Altshuler EL, Huang B, Jin EK, Stan C, Towers P, Wedi N (2012) Tropical cyclone climatology in a 10 km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25:3867–3893

    Article  Google Scholar 

  • Manganello JV, Hodges KI, Dirmeyer B, Kinter JL, Cash BA, Marx L, Jung T, Achuthavarier D, Adams JM, Altshuler EL, Huang B, Jin EK, Towers P, Wedi N (2014) Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J Clim 27:7622–7646. https://doi.org/10.1175/JCLI-D-13-00678.1

    Article  Google Scholar 

  • Martínez-Sanchez JN, Cavazos T (2014) Eastern Tropical Pacific hurricane variability and landfalls on Mexican coasts. Clim Res 58:221–234

    Article  Google Scholar 

  • Moss R et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132

    Google Scholar 

  • Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012a) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260

    Article  Google Scholar 

  • Murakami H, Mizuta R, Shindo E (2012b) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI AGCM. Clim Dyn 39(9–10):2569–2584

    Article  Google Scholar 

  • Murakami H, Sugi M, Kitoh A (2013) Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim Dyn 40:1949–1968. https://doi.org/10.1007/s00382-012-1407-z

    Article  Google Scholar 

  • Murakami H, Hsu P-C, Arakawa O, Li T (2014) Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. J Clim 27:2159–2181

    Article  Google Scholar 

  • Murakami HG, Vecchi A, Underwood S (2017) Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat Clim Change 7:885–889

    Article  Google Scholar 

  • Pal J-S, Small E-E, Eltahir E-A-B (2000) Simulation of regional scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594

    Article  Google Scholar 

  • Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780

    Article  Google Scholar 

  • Prat OP, Nelson BR (2013) Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite precipitation analysis. Water Resour Res 49:7236–7254. https://doi.org/10.1002/wrcr.20527

    Article  Google Scholar 

  • Rappaport EN (2000) Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull Am Meteor Soc 81:2065–2073. https://doi.org/10.1175/1520-0477(2000)0812.3.CO;2

    Article  Google Scholar 

  • Rastogi D, Ashfaq M, Leung R, Ghosh S, Saha A, Hodges K, Evans K (2018) Characteristics of Bay of Bengal, monsoon depressions in the 21st century. Geophys Res Lett. https://doi.org/10.1029/2018GL078756

    Article  Google Scholar 

  • Reed KA, Bacmeister JT, Rosenbloom NA et al (2015) Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys Res Lett 42:3603–3608. https://doi.org/10.1002/2015GL063974

    Article  Google Scholar 

  • Satgé F, Defrance D, Sultan B, Bonnet MP, Seyler F, Rouché N, Pierron F, Paturel JE (2020) Evaluation of 23 gridded precipitation datasets across West Africa. J Hydrol 581:124412

    Article  Google Scholar 

  • Seiler C, Zwiers F, Hodges KI, Scinocca J (2018) How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America’s Atlantic coast? Clim Dyn 50:677–692. https://doi.org/10.1007/s00382-017-3634-9

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Sugi M, Murakami H, Yoshida K (2017) Projection of future changes in the frequency of intense cyclones. Clim Dyn 49:619–632. https://doi.org/10.1007/s00382-016-3361-7

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 78:485–498

    Article  Google Scholar 

  • Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124:745–750. https://doi.org/10.1175/1520-0493(1996)124%3C0745:AEOCRP%3E2.0.CO;2

    Article  Google Scholar 

  • Tran-Quang D, Pham-Thanh H, Vu T, Kieu C, Phan-Van T (2020) Climatic shift of the tropical cyclone activity affecting Vietnam’s coastal region. J Appl Meteor Climatol 59:1755–1768. https://doi.org/10.1175/JAMC-D-20-0021.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Increased tropical Atlantic wind shear in model projections of global warming. Geophys Res Lett 34:L08702

    Article  Google Scholar 

  • Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K, Jia L, Kim H, Krishnamurthy L, Msadek R, Stern WF, Underwood SD, Villarini G, Yang X, Zhang S (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27:7994–8016. https://doi.org/10.1175/JCLI-D-14-00158.1

    Article  Google Scholar 

  • Vishnu S, Sanjay J, Krishnan R (2019) Assessment of climatological tropical cyclone activity over the north Indian Ocean in the CORDEX-South Asia regional climate models. Clim Dyn 53:5101. https://doi.org/10.1007/s00382-019-04852-8

    Article  Google Scholar 

  • Walsh KJE, Fiorino M, Landsea CW, McInnes KL (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate model and reanalyses. J Clim 20:2307–2314

    Article  Google Scholar 

  • Walsh K, Lavender S, Murakami H, Scoccimarro E, Caron L-P, Ghantous M (2010) The tropical intercomparison project. In: Elsner JB, Hodges RE, Malmstadt JC, Scheitlin KN (eds) Hurricanes and climate change. Springer, Berlin, pp 1–24

    Google Scholar 

  • Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, Knutson TR, Kossin JP, Lee T-C, Sobel A, Sugi M (2016) Tropical cyclones and climate change. Wiley Interdiscip Rev Clim Change 7(1):65–89. https://doi.org/10.1002/wcc.371

    Article  Google Scholar 

  • Wang C, Liang J, Hodges KI (2017) Projections of tropical cyclones affecting Vietnam under climate change: downscaled HadGEM2-ES using PRECIS 2.1. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3046

    Article  Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846. https://doi.org/10.1126/science.1116448

    Article  Google Scholar 

  • Wehner MF, Reed KA, Loring B, Stone D, Krishnan H (2018) Changes in tropical cyclones under stabilized 1.5 °C and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth Syst Dyn 9:187–195

    Article  Google Scholar 

  • Zappa G, Hawcroft MK, Shaffrey L, Black E, Brayshaw DJ (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson R-E (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zhang W, Zhou T (2019) Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J Clim 32:8465–8488. https://doi.org/10.1175/JCLI-D-18-0662.1

    Article  Google Scholar 

  • Zhang ZS et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5:523–533. https://doi.org/10.5194/gmd-5-523-2012

    Article  Google Scholar 

  • Zhang W, Villarini G, Vecchi GA, Murakami H (2019) Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim Dyn. https://doi.org/10.1007/s00382-018-4446-2

    Article  Google Scholar 

  • Zhao M, Held IM (2010) An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J Clim 23:6382–6393

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the comments and suggestions of the editor and three anonymous reviewers, which helped improve this manuscript. The RegCM4 simulations for the ICTP institute have been completed, thanks to the support of the CINECA supercomputing center, Bologna, Italy, and ISCRA projects HP10BDU7TR and HP10BQCFJ2. The authors would like to thank Graziano Giuliani and Ivan Girotto for their constant support in the preparation of the simulations used in this paper. The authors would also like to thank the CMIP5 and Kevin Hodges, as well as the ESGF for providing access to their database, where most of the data was available. The study was also supported by the Oak Ridge Leadership Computing Facility, the National Climate-Computing Research Center at the Oak Ridge National Laboratory and the Chinese Academy of Sciences, all of whom provided access to their simulation data. The observed data were provided by NOAA (https://www.ncdc.noaa.gov/ibtracs/index.php?name=bib) and by Hylke Beck, the developer of the MSWEP data (http://www.gloh2o.org/). M. Reale has been supported in this work by OGS and CINECA under HPC-TRES award number 2015-07 and by the project FAIRSEA (Fisheries in the Adriatic Region—a Shared Ecosystem. Approach) funded by the 2014–2020 Interreg V‐A Italy—Croatia CBC Programme (Standard project ID 10046951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Abraham Torres-Alavez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Alavez, J.A., Glazer, R., Giorgi, F. et al. Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations. Clim Dyn 57, 1507–1531 (2021). https://doi.org/10.1007/s00382-021-05728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05728-6

Keywords

Navigation