Skip to main content
Log in

Study of the Effect of Rhenium on Heat-Resistant Titanium Alloy Mechanical Properties and Microstructure

  • Published:
Metallurgist Aims and scope

Complexly alloyed heat-resistant titanium alloys of the composition Ti–5Al–5Mo–5V–3Cr–1Re are studied. High-temperature test mechanical properties of these alloys in compression and tension at 600°C are provided and compared with similar properties of alloy Ti–5Al–5Mo–5V–3Cr. It is established that addition of rhenium increases alloy high-temperature strength properties and plastic deformation processes occur mainly in the β -phase not affecting α -phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. A. Inozemtsev, N. G. Bashkatov, and A. S. Koryakovtsev, Contemporary Titanium Alloys and Development Problems [in Russian], VIAM, Moscow (2010).

    Google Scholar 

  2. K. Majchrowicz, Z. Pakieła, D. Moszczynśka, T. Kurzynowski, and E. Hot Chlebus, “Corrosion of Ti–Re alloys fabricated by selective laser melting,” Oxid Met., 90, 83–96 (2018).

  3. V. A. Bykov, T. V. Kulikova, L. B. Vedmid, A. Ya. Fishman, K. Yu. Shunyaev, and N. Tu. Tarenkova, “Thermophysical properties of Ti–5Al–5V–5Mo–3Cr–1Zr titanium alloy,” Phys. Met. Metallogr., 115, 705–709 (2014).

  4. A. V. Dobromyslov, “Effect of D metals on the polymorphous and (mono) eutectoid transformation temperatures of binary titanium, zirconium, and hafnium alloys,” The Physics of Metals and Metallography, 121, No. 5, 466–470 (2020).

  5. Q. Wang, C. Dong, and Peter K. Liaw, “Structural stabilities of β -Ti alloys studies using a new Mo equivalent derived from [β/(α + β)] phase- boundary slopes,” Metall. Mater. Trans. A, 46, 3440–3447 (2015).

  6. А. Zh. Terlikbaeva, P. А. Osipov, R. А. Shayakhmetova, and A. M. Alimzhanova, “Study of the influence of rhenium on the structure and properties of heat-resistant titanium alloys by,” J. Balkan Tribological Association, 25, No. 4, 845– 855 (2019).

    CAS  Google Scholar 

  7. K. Majchrowicz, Z. Pakieła, T. Brynk, B. Romelczyk-Baishya, M. Płocińska, T. Kurzynowski, and E. Chlebus, “Microstructure and mechanical properties of Ti–Re alloys manufactured by selective laser melting,” Materials Science & Engineering A, 765, 138290 (2019).

    Article  CAS  Google Scholar 

  8. Yang Shang-lei and Lou Song-nian, “Calculation on the Solid Solution forming enthalpies of Re-Mo-Ti gradient alloy in thermodynamics,” J. Shanghai Univ. (Sci)., No. 16 (2), 180– 185 (2011).

  9. E. N. Kablov, “Physicochemical and production features of heat-resistant alloy creation containing rhenium,” Vestn. Mosk. Univ., Ser. 2, Khimiya, 46, No. 3, 155–167 (2005).

  10. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition. Structure. Properties: Handbook [in Russian], VILSMATI, Moscow (2009).

  11. O. M. Ivasishin, D. G. Savvakin, M. V. Matviichuk, and V. I. Bondarchuk, “Synthesis of titanium alloy Ti–5Al–5Mo–5V–3Cr by powder metallurgy,” Metall. Fiz. Nov. Tekhnol., 31, No. 8, 21–29 (2009).

    Google Scholar 

  12. F. Warchomicka, C. Poletti, and M. Stockinger, “Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr,” Materials Science and Engineering: A, 528 (28), 8277–8285 (2011).

    Article  CAS  Google Scholar 

  13. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, and Y. V. R. K. Prasad, “Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure,” Materials Science and Engineering: A, 325 (1–2), 112–125 (2002).

  14. M. Dikovits, C. Poletti, and F. Warchomicka, “Deformation mechanisms in the near-β titanium alloy Ti-55531,” Metall. Mater. Trans. A, 45 (672), 1586–1596 (2014).

    Article  CAS  Google Scholar 

  15. N. G. Jones, R. J. Dashwood, D. Dye, and M. Jackson, “The flow behavior of microstructural evolution of Ti–5Al– 5Mo–5V–3Cr during subtransus isothermal forging,” Metallurgical and Materials Transactions: A, 40, No. 8, 1944–1954 (2009).

  16. E. Chlebus, B. Kuźnicka, R. Dziedzic, and T. Kurzynowski, “Titanium alloyed with rhenium by selective laser melting,” Materials Science and Engineering: A, 620, 155– 163 (2015).

    Article  Google Scholar 

  17. P. Barriobero-Vila, G. Requena, S. Schwarz, F. Warchomicka, and T. Buslaps, “Influence of phase transformation kinetics on the formation of α in a β -quenched Ti–5Al–5Mo–5V– 3Cr–1Zr alloy,” Acta Materialia, 95, 90–101 (2015).

    Article  CAS  Google Scholar 

  18. K. Hua K, XY. Xue, HC. Kou, JK. Fan, B. Tang and JS. Li JS, “High temperature deformation behaviour of Ti–5Al–5Mo–5V– 3Cr during thermomechanical processing,” Mater. Research Innovations, 18, No. 4, 202–206 (2014).

  19. S. K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharajee, “Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions,” Mater. Charact., 81, 37–48 (2013).

    Article  CAS  Google Scholar 

  20. S. V. Zherebtsov, M. A. Murzinova, M. V. Klimova, G. A. Salishshev, A. A. Popov, and S. L. Semiatin, “Microstructure evolution during warm working of Ti–5Al–5Mo–5V–1Cr–1Fe at 600 and 800°C,” Materials Science & Engineering: A, 563, 168–176 (2013).

    Article  CAS  Google Scholar 

  21. H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, and A. Chiba, “Hot forging characteristic of Ti–5Al–5V–5Mo–3Cr alloy with single metastable β microstructure,” Materials Science and Engineering: A, 611, 337–344 (2014).

    Article  CAS  Google Scholar 

  22. S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, and H. L. Fraser, “ω -Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy,” Acta Materialia, 57, 2136–2147 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Shayakhmetova.

Additional information

Translated from Metallurg, Vol. 64, No. 12, pp. 76–82, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayakhmetova, R.A., Terlikbaeva, A.Z., Osipov, P.A. et al. Study of the Effect of Rhenium on Heat-Resistant Titanium Alloy Mechanical Properties and Microstructure. Metallurgist 64, 1322–1330 (2021). https://doi.org/10.1007/s11015-021-01122-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01122-z

Keywords

Navigation