Skip to main content
Log in

Applying Empirical Orthogonal Function and Determination Coefficient Methods for Determining Major Contributing Factors of Satellite Sea Level Anomalies Variability in the Arabian Gulf

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Gridded satellite altimetry data of the Arabian Gulf during 1993–2017 were utilized to determine the relative contributions of sea surface temperature, sea level pressure, wind speed, and evaporation reanalysis data on the variability of remotely sensed sea level anomaly (SLA), which shows a mean increasing trend of 3 mm/yr. Sea surface temperature had the strongest effect on SLA, contributing 38.40% of the variability. Sea level pressure had the second greatest effect at 17%. Wind speed did not have a significant contribution to SLA variability, while evaporation had an effect of approximately 4.13%. EOF analysis was used to determine the mode of SLA variability. The first six modes explained more than 90% of the variability in SLA. The first mode, which represents the annual signal, explains 80.30% of the variability, while the second mode resolves approximately 6.80%. The contributions of different factors on the first and second modes show that the sea surface temperature and sea level pressure dominate the influence on the annual signal. Wind speed did not show a strong effect on either annual or semiannual fluctuations, while the main contribution on the semiannual signal was due to evaporation with 9.62%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. John, V.C.: Harmonic tidal current constituents of the western Arabian Gulf from moored current measurements. Coast. Eng. 17, 145–151 (1992). https://doi.org/10.1016/0378-3839(92)90016-N

    Article  Google Scholar 

  2. Al-Subhi, A.M.: Tide and sea level characteristics at Juaymah, west coast of the Arabian Gulf. J. King Abdul Aziz Univ. Mar. Sci. 21, 133–149 (2010). https://doi.org/10.4197/Mar.21-1.8

    Article  Google Scholar 

  3. Mashayekh Poul, H.; Backhaus, J.; Huebner, U.: A description of the tides and effect of Qeshm canal on that in the Persian Gulf using two-dimensional numerical model. Arab. J. Geosci. 9, 1–11 (2016). https://doi.org/10.1007/s12517-015-2259-8

    Article  Google Scholar 

  4. Siddig, N.A.; Al-Subhi, A.M.; Alsaafani, M.A.: Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia 61, 401–411 (2019). https://doi.org/10.1016/j.oceano.2019.05.003

    Article  Google Scholar 

  5. Akbari, P., Sadrinasab, M., Chegini, V., Siadatmousavi, M.: Tidal constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a numerical study. (2016)

  6. Lau, N.-C.; Nath, M.J.: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J. Clim. 7, 1184–1207 (1994). https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  7. Senafi, F.; Anis, A.: Shamals and climate variability in the Northern Arabian/Persian Gulf from to. Int. J. Climatol. 35, 4509–4528 (2015). https://doi.org/10.1002/joc.4302

    Article  Google Scholar 

  8. Sultan, S.A.R.; Moamar, M.O.; El-Ghribi, N.M.; Williams, R.: Sea level changes along the Saudi coast of the Arabian Gulf. Indian J. Mar. Sci. 29, 191–200 (2000)

    Google Scholar 

  9. Nandkeolyar, N.; Raman, M.; Kiran, G.S.: Ajai: comparative analysis of sea surface temperature pattern in the eastern and western Gulfs of Arabian Sea and the Red Sea in recent past using satellite data. Int. J. Oceanogr. 2013, 1–16 (2013). https://doi.org/10.1155/2013/501602

    Article  Google Scholar 

  10. Barzandeh, A.; Eshghi, N.; Hosseinibalam, F.; Hassanzadeh, S.: Wind-driven coastal upwelling along the northern shoreline of the Persian Gulf. Bollettino di Geofisica Teorica ed Applicata. 59, 301–3012 (2018). https://doi.org/10.4430/bgta0235

    Article  Google Scholar 

  11. Reynolds, R.M.: Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35–59 (1993). https://doi.org/10.1016/0025-326X(93)90007-7

    Article  Google Scholar 

  12. Sultan, S.A.R.; Elghribi, N.M.: Temperature inversion in the Arabian Gulf and the Gulf of Oman. Cont. Shelf Res. 16, 1521–1544 (1996). https://doi.org/10.1016/0278-4343(95)00086-0

    Article  Google Scholar 

  13. Privett, D.W.: Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Quart. J. R. Meteorol. Soc. 85, 424–428 (1959). https://doi.org/10.1002/qj.49708536614

    Article  Google Scholar 

  14. Azam, M.H.; Elshorbagy, W.; Ichikawa, T.; Terasawa, T.; Taguchi, K.: 3D model application to study residual flow in the Arabian Gulf. J. Waterw. Port Coast. Ocean Eng. 132, 388–400 (2006). https://doi.org/10.1061/(ASCE)0733-950X(2006)132:5(388)

    Article  Google Scholar 

  15. Perrone, T.J.: Winter Shamal in the Persian Gulf, Naval Environmental Prediction Research Facility, Monterey. California, Technical Report, IR-79–06. (1979)

  16. Crook, J.: Climate analysis and long range forecasting of dust storms in Iraq. Naval Postgraduate School Monterey CA, https://apps.dtic.mil/sti/citations/ADA501137, (2009)

  17. Cavalcante, G.H.; Feary, D.A.; Burt, J.A.: The influence of extreme winds on coastal oceanography and its implications for coral population connectivity in the southern Arabian Gulf. Mar. Pollut. Bull. 105, 489–497 (2016). https://doi.org/10.1016/j.marpolbul.2015.10.031

    Article  Google Scholar 

  18. Al-salem, K.; Neelamani, S.; Al-nassar, W.: Wind energy map of Arabian Gulf. Nat. Res. 9, 212–228 (2018). https://doi.org/10.4236/nr.2018.95014

    Article  Google Scholar 

  19. Marafia, A.-H.; Ashour, H.A.: Economics of off-shore/on-shore wind energy systems in Qatar. Renew. Energy 28, 1953–1963 (2003). https://doi.org/10.1016/S0960-1481(03)00060-0

    Article  Google Scholar 

  20. Rehman, S.; Ahmad, A.: Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia. Energy 29, 1105–1115 (2004)

    Article  Google Scholar 

  21. Mostafaeipour, A.: Feasibility study of offshore wind turbine installation in Iran compared with the world. Renew. Sustain. Energy Rev. 14, 1722–1743 (2010). https://doi.org/10.1016/j.rser.2010.03.032

    Article  Google Scholar 

  22. Hastenrath, S., Lamb, P.J.: Climatic atlas of the Indian Ocean. Part II: The oceanic heat budget. The University of Wisconsin Press, Madison, Wisconsin (1979)

  23. Xue, P.; Eltahir, E.A.B.: Estimation of the heat and water budgets of the Persian (Arabian) gulf using a regional climate model. J. Clim. 28, 5041–5062 (2015). https://doi.org/10.1175/JCLI-D-14-00189.1

    Article  Google Scholar 

  24. Hunter, J.R.: The physical oceanography of the Arabian Gulf: a review and theoretical interpretation of previous observations. In: The first Arabian Gulf conference on environment and pollution. pp. 1–23. Kuwait University, Faculty of Science, Kuwait (1982)

  25. Brewer, P.G.; Dyrssen, D.: Chemical Oceanography of the Persian Gulf. Prog. Oceanogr. 14, 41–55 (1985). https://doi.org/10.1016/0079-6611(85)90004-7

    Article  Google Scholar 

  26. Swift, S.A.; Bower, A.S.: Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. 108, 3004 (2003). https://doi.org/10.1029/2002JC001360

    Article  Google Scholar 

  27. Jones, P.D.; Briffa, K.R.: Global surface air temperature variations during the twentieth century : Part 1, spatial, temporal and seasonal details. The Holocene 2, 165–179 (1992). https://doi.org/10.1177/095968369200200208

    Article  Google Scholar 

  28. Afshar-Kaveh, N.; Nazarali, M.; Pattiaratchi, C.: Relationship between the Persian Gulf Sea-Level Fluctuations and Meteorological Forcing. J. Mar. Sci. Eng. 8, 285 (2020). https://doi.org/10.3390/jmse8040285

    Article  Google Scholar 

  29. Afshar-Kaveh, N.; Ghaheri, A.; Chegini, V.; Nazarali, M.: Prediction of nontidal sea level variations in the Persian Gulf using data assimilation techniques. Coast. Eng. J. 60, 340–355 (2018). https://doi.org/10.1080/21664250.2018.1530852

    Article  Google Scholar 

  30. Heidarzadeh, M.; Šepić, J.; Rabinovich, A.; Allahyar, M.; Soltanpour, A.; Tavakoli, F.: Meteorological Tsunami of 19 March 2017 in the Persian Gulf : Observations and analyses. Pure Appl. Geophys. 177, 1231–1259 (2020). https://doi.org/10.1007/s00024-019-02263-8

    Article  Google Scholar 

  31. Hosseinibalam, F.; Hassanzadeh, S.; Kiasatpour, A.: Interannual variability and seasonal contribution of thermal expansion to sea level in the Persian Gulf. Deep Sea Res. Part I 54, 1474–1485 (2007). https://doi.org/10.1016/J.DSR.2007.05.005

    Article  Google Scholar 

  32. Sultan, S.A.R.; Ahmad, F.; Elghribi, N.M.; Al-Subhi, A.M.: An analysis of Arabian Gulf monthly mean sea level. Cont. Shelf Res. 15, 1471–1482 (1995). https://doi.org/10.1016/0278-4343(94)00081-W

    Article  Google Scholar 

  33. Hersbach, H.: The ERA5 Atmospheric Reanalysis. In: AGU fall meeting abstracts. pp. NG33D-01 (2016)

  34. Fukuoka, A.: The central meteorological observatory, a study on 10-day forecast (a synthetic report). Geophys. Mag. 22, 177–208 (1951)

    Google Scholar 

  35. Hannachi, A.: A primer for EOF analysis of climate data. Department of Meteorology, University of Reading. pp. 1–33 (2004)

  36. Lorenz, E.N.: Empirical orthogonal functions and statistical weather prediction. Department of Meteorology, Massachusetts Institute of Technology, Cambridge, MA (1956)

  37. Kosambi, D.D.: Statistics in function space. pp. 115–123. Springer, New Delhi (2016)

  38. Hahn, G.J.: The coefficient of determination exposed. ChemTech 3, 609–612 (1973)

    Google Scholar 

  39. Alawad, K.A.; Al-Subhi, A.M.; Alsaafani, M.A.; Alraddadi, T.M.; Ionita, M.; Lohmann, G.: Large-scale mode impacts on the sea level over the red sea and Gulf of Aden. Remote Sens. 11, 2224 (2019)

    Article  Google Scholar 

  40. Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jordà, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D.P.: The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 118, 944–952 (2013). https://doi.org/10.1002/jgrc.20078

    Article  Google Scholar 

  41. Hassanzadeh, S.; Kiasatpour, A.; Hosseinibalam, F.: Sea-level response to atmospheric forcing along the north coast of Persian Gulf. Meteorol. Atmos. Phys. 95, 223–237 (2007). https://doi.org/10.1007/s00703-006-0213-8

    Article  Google Scholar 

  42. Alothman, A.O.; Bos, M.S.; Fernandes, R.M.S.; Ayhan, M.E.: Sea level rise in the north-western part of the Arabian Gulf. J. Geodyn. 81, 105–110 (2014). https://doi.org/10.1016/j.jog.2014.09.002

    Article  Google Scholar 

  43. Al-Rashidi, T.; El-Gamily, H.; Amos, C.; Rakha, K.: Sea surface temperature trends in Kuwait Bay. Arabian Gulf Nat. Hazards 50, 73–82 (2008). https://doi.org/10.1007/s11069-008-9320-9

    Article  Google Scholar 

  44. Eager, R.E.; Raman, S.; Wootten, A.; Westphal, D.L.; Reid, J.S.; Mandoos, A.: Al: A climatological study of the sea and land breezes in the Arabian Gulf region. J. Geophys. Res. 113, 1–12 (2008)

    Google Scholar 

  45. Elhadidy, M.A.; Shaahid, S.M.: Wind resource assessment of eastern coastal region of Saudi Arabia. Desalination 209, 199–208 (2007). https://doi.org/10.1016/j.desal.2007.04.029

    Article  Google Scholar 

  46. Khonkar, H.: Complete survey of wind behavior over the Arabian Gulf. J. King Abdulaziz Univ. Mar. Sciences. 20, 31–47 (2009). https://doi.org/10.4197/Mar.20-1.3

    Article  Google Scholar 

  47. Rao, P.G.; Al-Sulaiti, M.; Al-Mulla, A.H.: Winter shamals in Qatar, Arabian Gulf. Weather 56, 444–451 (2001). https://doi.org/10.1002/j.1477-8696.2001.tb06528.x

    Article  Google Scholar 

  48. El-Gindy, A.A.; Eid, F.M.: The seasonal variations of sea level due to density variations in the Arabian Gulf and Gulf of Oman. Pak. J. Mar. Sci. 6, 1–12 (1997)

    Google Scholar 

  49. El-Gindy, A.A.H.: Sea level variations and their relations to the meteorological factors in the Arab Gulf Area with stress on monthly means. Int. Hydrograph. Rev. 1, 109–125 (1991)

    Google Scholar 

  50. Alfartusi, A.J.M.: Estimation of evaporation rates in the north west Arabian gulf based on sea surface temperature and Meteorological data. Univ. Thi-Qar J. Sci. 7, 37–40 (2019)

    Google Scholar 

  51. Ibrahim, H.D.: Investigation of the impact of desalination on the salinity of the Persian Gulf. Ph.D. Thesis. Massachusetts Institute of Technology, (2017)

  52. Han, W.; Meehl, G.A.; Stammer, D.: Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys. 38, 217–250 (2017). https://doi.org/10.1007/s10712-016-9386-y

    Article  Google Scholar 

  53. Nidheesh, A.G.; Lengaigne, M.; Vialard, J.; Unnikrishnan, A.S.; Dayan, H.: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim. Dyn. 41, 381–402 (2013). https://doi.org/10.1007/s00382-012-1463-4

    Article  Google Scholar 

  54. Fukumori, I.; Wang, O.: Origins of heat and freshwater anomalies underlying regional decadal sea level trends. Geophys. Res. Lett. 40, 563–567 (2013). https://doi.org/10.1002/grl.50164

    Article  Google Scholar 

  55. Kamranzad, B.: Persian Gulf zone classification based on the wind and wave climate variability. Ocean Eng. 169, 604–635 (2018). https://doi.org/10.1016/j.oceaneng.2018.09.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AVISO–center localization satellite (CLS), Toulouse, France, for providing the altimetric sea level anomaly data. We also thank the European Center for Medium-Range Weather Forecasts (ECMWF) for the meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Abdulraheem Siddig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddig, N.A., Al-Subhi, A.M., Alsaafani, M.A. et al. Applying Empirical Orthogonal Function and Determination Coefficient Methods for Determining Major Contributing Factors of Satellite Sea Level Anomalies Variability in the Arabian Gulf. Arab J Sci Eng 47, 619–628 (2022). https://doi.org/10.1007/s13369-021-05612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05612-9

Keywords

Navigation