Skip to main content
Log in

The compactness and the concentration compactness via p-capacity

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

For \(p \in (1,N)\) and \(\Omega \subseteq {\mathbb {R}}^N\) open, the Beppo-Levi space \({\mathcal {D}}^{1,p}_0(\Omega )\) is the completion of \(C_c^{\infty }(\Omega )\) with respect to the norm \(\left[ \int _{\Omega }|\nabla u|^p \ dx \right] ^ \frac{1}{p}.\) Using the p-capacity, we define a norm and then identify the Banach function space \({\mathcal {H}}(\Omega )\) with the set of all g in \(L^1_{loc}(\Omega )\) that admits the following Hardy–Sobolev type inequality:

$$\begin{aligned} \int _{\Omega } |g| |u|^p \ dx \le C \int _{\Omega } |\nabla u|^p \ dx, \forall \; u \in {\mathcal {D}}^{1,p}_0(\Omega ), \end{aligned}$$

for some \(C>0.\) Further, we characterize the set of all g in \({\mathcal {H}}(\Omega )\) for which the map \(G(u)= \displaystyle \int _{\Omega } g |u|^p \ dx\) is compact on \({\mathcal {D}}^{1,p}_0(\Omega )\). We use a variation of the concentration compactness lemma to give a sufficient condition on \(g\in {\mathcal {H}}(\Omega )\) so that the best constant in the above inequality is attained in \({\mathcal {D}}^{1,p}_0(\Omega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc., 130(2), 489–505 (electronic), (2002)

  2. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. Springer, Berlin, third edition, (2006). A hitchhiker’s guide

  3. Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in \({\mathbb{R}}^n\). Proc. Amer. Math. Soc. 116(3), 701–706 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14(1), 148–156 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Anoop, T.V.: Weighted eigenvalue problems for the \(p\)-Laplacian with weights in weak Lebesgue spaces. Electron. J. Differential Equations 2011(64), 1–22 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Anoop, T.V., Das, U., Sarkar, A.: On the generalized Hardy-Rellich inequalities. Proc. Roy. Soc. Edinburgh Sect. A 150(2), 897–919 (2020)

    Article  MathSciNet  Google Scholar 

  7. Anoop, T.V., Drábek, P., Sasi, S.: Weighted quasilinear eigenvalue problems in exterior domains. Calc. Var. Partial Differ Equ 53(3–4), 961–975 (2015)

    Article  MathSciNet  Google Scholar 

  8. Anoop, T.V., Lucia, M., Ramaswamy, M.: Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Differ Equ 36(3), 355–376 (2009)

    Article  MathSciNet  Google Scholar 

  9. Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163(4), 259–293 (2002)

    Article  MathSciNet  Google Scholar 

  10. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and applied mathematics, vol. 129. Academic Press Inc, Boston (1988)

    MATH  Google Scholar 

  11. Bertin, G.: Dynamics of Galaxies. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Brézis, H., Lieb, Ea.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  13. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Ciotti, L.: Dynamical models in astrophysics. Lecture Notes, Scuola Normale Superiore, Pisa (2001)

  15. Edmunds, D.E., Evans, W.D.: Hardy operators, function spaces and embeddings. Springer monographs in mathematics. Springer, Berlin (2004)

    Book  Google Scholar 

  16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  17. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  18. Filippas, S., Tertikas, A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192(1), 186–233 (2002)

    Article  MathSciNet  Google Scholar 

  19. Lang, J., Nekvinda, A.: A difference between continuous and absolutely continuous norms in Banach function spaces. Czechoslovak Math. J. 47(122(2)), 221–232 (1997)

    Article  MathSciNet  Google Scholar 

  20. Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2001)

  21. Lions, P.L.: The concentration-compactness principle in the calculus of variations: The locally compact cases I & II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2), 109–145, 223–283 (1984)

  22. Lions, P.L.: The concentration-compactness principle in the calculus of variations: The limit cases I and II. Rev. Mat. Iberoamericana, 1(1), 45–121, 145–201 (1985)

  23. Lorentz, G.G.: Some new functional spaces. Ann. of Math. 2(51), 37–55 (1950)

    Article  MathSciNet  Google Scholar 

  24. Mancini, G., Fabbri, I., Sandeep, K.: Classification of solutions of a critical Hardy-Sobolev operator. J. Differ Equ 224(2), 258–276 (2006)

    Article  MathSciNet  Google Scholar 

  25. Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4(7), 285–301 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Maz’ja, V.G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova

  27. Rindler, F.: Calculus of variations Universitext. Springer, Cham (2018)

    Book  Google Scholar 

  28. Smets, D.: A concentration-compactness lemma with applications to singular eigenvalue problems. J. Funct. Anal. 167(2), 463–480 (1999)

    Article  MathSciNet  Google Scholar 

  29. Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135(2), 191–201 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Tertikas, A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154(1), 42–66 (1998)

    Article  MathSciNet  Google Scholar 

  31. Visciglia, N.: A note about the generalized Hardy-Sobolev inequality with potential in \(L^{p, d}({\mathbb{R}}^n)\). Calc. Var. Partial Diff Equ 24(2), 167–184 (2005)

    Article  MathSciNet  Google Scholar 

  32. Zaanen, A.C.: An Introduction to the Theory of Integration. North-Holland Publishing Company, Amsterdam (1958)

    MATH  Google Scholar 

Download references

Acknowledgement

T. V. Anoop would like to thank the Department of Science & Technology, India, for the research grant DST/INSPIRE/04/2014/001865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop, T.V., Das, U. The compactness and the concentration compactness via p-capacity. Annali di Matematica 200, 2715–2740 (2021). https://doi.org/10.1007/s10231-021-01098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01098-2

Keywords

Mathematics Subject Classification

Navigation