Skip to main content
Log in

Carbon Fiber Supported Binary Metal Sulfide Catalysts with Multi-Dimensional Structures for Electrocatalytic Nitrogen Reduction Reactions Over a Wide pH Range

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Green and environmentally friendly electrocatalytic nitrogen (N2) fixation to synthesize ammonia (NH3) is recognized as an effective method to replace the traditional Haber–Bosch process. However, the difficulties in N2 adsorption and fracture of hard N≡N bond still remain major challenges in electrocatalytic N2 reduction reactions (NRR). From the perspectives of enhancing N2 adsorption and providing more catalytic sites, two-dimensional (2D) FeS2 nanosheets and three-dimensional (3D) metal organic framework-derived ZnS embedded within N-doped carbon polyhedras are grown on the carbon cloth (CC) template in this work. Thus, a composite NRR catalyst with multi-dimensional structures, which is signed as FeS2/ZnS-NC@CC, is obtained for using over a wide pH range. The uniform distribution of hollow ZnS-NC frameworks and FeS2 nanosheets on the surface of CC largely increase the N2 enrichment efficiency and offer more active sites, while the CC skeleton acts as an independent conductive substrate and S-doping helps promote the fracture of N≡N bond during the NRR reaction. As a result, the FeS2/ZnS-NC@CC electrode achieves a high Faraday efficiency of 46.84% and NH3 yield of 58.52 μg h−1 mg−1 at -0.5 V vs. Ag/AgCl in 0.1 M KOH. Furthermore, the FeS2/ZnS-NC@CC electrode displays excellent NRR catalytic activity in acidic and neutral electrolytes as well, which outperforms most previously reported electrocatalysts including noble metals. Therefore, this work provides a new way for the design of multi-dimensional electrocatalysts with excellent electrocatalytic efficiency and stability for NRR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Service RF. New recipe produces ammonia from air, water, and sunlight. Science. 2014;345:610.

    Article  Google Scholar 

  2. Rosca V, Duca M, de Groot MT, Koper MTM. Nitrogen cycle electrocatalysis. Chem Rev. 2009;109:2209–44.

    Article  CAS  Google Scholar 

  3. Burgess BK, Lowe DJ. Mechanism of molybdenum nitrogenase. Chem Rev. 1996;96:2983–3011.

    Article  CAS  Google Scholar 

  4. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci. 2008;1:636–9.

    Article  CAS  Google Scholar 

  5. Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today. 2017;286:57–68.

    Article  CAS  Google Scholar 

  6. van der Ham CJM, Koper MTM, Hetterscheid DGH. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev. 2014;43:5183–91.

    Article  Google Scholar 

  7. Chirik PJ. One electron at a time. Nat Chem. 2009;1:520–2.

    Article  CAS  Google Scholar 

  8. Zhang L, Ji X, Ren X, Ma Y, Shi X, Tian Z, Asiri AM, Chen L, Tang B, Sun X. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv Mater. 2018;30:1800191.

    Article  CAS  Google Scholar 

  9. Banerjee A, Yuhas BD, Margulies EA, Zhang Y, Shim Y, Wasielewski MR, Kanatzidis MG. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J Am Chem Soc. 2015;137:2030–4.

    Article  CAS  Google Scholar 

  10. Sun K, Moreno-Hernandez IA, Schmidt WC Jr, Zhou X, Crompton JC, Liu R, Saadi F, Chen Y, Papadantonakis KM, Lewis NS. A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators. Energy Environ Sci. 2017;10:987–1002.

    Article  CAS  Google Scholar 

  11. Pang F, Wang Z, Zhang K, He J, Zhang W, Guo C, Ding Y. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy. 2019;58:834–41.

    Article  CAS  Google Scholar 

  12. Deng J, Iniguez JA, Liu C. Electrocatalytic nitrogen reduction at low temperature. Joule. 2018;2:846–56.

    Article  CAS  Google Scholar 

  13. Singh AR, Rohr BA, Schwalbe JA, Cargnello M, Chan K, Jaramillo TF, Chorkendorff I, Norskov JK. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017;7:706–9.

    Article  CAS  Google Scholar 

  14. Kordali V, Kyriacou G, Lambrou C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun. 2000;17:1673–4.

    Article  Google Scholar 

  15. Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy. 2013;38:14576–94.

    Article  CAS  Google Scholar 

  16. Lan R, Irvine JTS, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep. 2013;3:1145.

    Article  CAS  Google Scholar 

  17. Wang J, Yu L, Hu L, Chen G, Xin H, Feng X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat Commun. 2018;9:1795.

    Article  CAS  Google Scholar 

  18. Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater. 2018;8:1800369.

    Article  CAS  Google Scholar 

  19. Eady RR. Structure–function relationships of alternative nitrogenases. Chem Rev. 1996;96:3013–30.

    Article  CAS  Google Scholar 

  20. Cao X, De J, Pan K. Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv Fiber Mater. 2020;2:85–92.

    Article  Google Scholar 

  21. Yandulov DV, Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science. 2003;301:76–8.

    Article  CAS  Google Scholar 

  22. Liu C, Li Q, Zhang J, Jin Y, MacFarlane DR, Sun C. Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. J Mater Chem A. 2019;7:4771–6.

    Article  CAS  Google Scholar 

  23. Ling C, Niu X, Li Q, Du A, Wang J. Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc. 2018;140:14161–8.

    Article  CAS  Google Scholar 

  24. Xia L, Wu X, Wang Y, Niu Z, Liu Q, Li T, Shi X, Asiri AM, Sun X. S-doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods. 2019;3:1800251.

    Article  CAS  Google Scholar 

  25. Sultana S, Mansingh S, Parida KM. Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. J Mater Chem A. 2019;7:9145–53.

    Article  CAS  Google Scholar 

  26. Wu X, Wang Z, Han Y, Zhang D, Wang M, Li H, Zhao H, Pan Y, Lai J, Wang L. Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions. J Mater Chem A. 2020;8:543–7.

    Article  CAS  Google Scholar 

  27. Guo Y, Yao Z, Timmer BJJ, Sheng X, Fan L, Li Y, Zhang F, Sun L. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range. Nano Energy. 2019;62:282–8.

    Article  CAS  Google Scholar 

  28. Ding Y, Chen YP, Zhang X, Chen L, Dong Z, Jiang HL, Xu H, Zhou HC. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J Am Chem Soc. 2017;139:9136–9.

    Article  CAS  Google Scholar 

  29. Chen S, Kang Z, Hu X, Zhang X, Wang H, Xie J, Zheng X, Yan W, Pan B, Xie Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv Mater. 2017;29:1701687.

    Article  CAS  Google Scholar 

  30. Zong W, Yang C, Mo L, Ouyang Y, Guo HL, Ge L, Miao YE, Rao D, Zhang J, Lai FL, Liu TX. Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy. 2020;77:150189.

    Article  CAS  Google Scholar 

  31. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev. 2018;47:2322–56.

    Article  CAS  Google Scholar 

  32. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AWK, Yan Q, Wei J, Chen Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater. 2015;27:3038–44.

    Article  CAS  Google Scholar 

  33. Chen Z, Wu R, Liu M, Wang H, Xu H, Guo Y, Song Y, Fang F, Yu X, Sun D. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv Funct Mater. 2017;27:1702046.

    Article  CAS  Google Scholar 

  34. Liu J, Zhu D, Guo C, Vasileff A, Qiao SZ. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater. 2017;7:1700518.

    Article  CAS  Google Scholar 

  35. Li W, Shu R, Wu Y, Zhang J. Metal organic frameworks-derived iron carbide/ferroferric oxide/carbon/reduced graphene oxide nanocomposite with excellent electromagnetic wave absorption properties. Compos Commun. 2021;23:100576.

    Article  Google Scholar 

  36. Yu Z, Bai Y, Zhang S, Liu Y, Zhang N, Sun K. Metal-organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting. J Mater Chem A. 2018;6:10441–6.

    Article  CAS  Google Scholar 

  37. Wu R, Wang DP, Zhou K, Srikanth N, Wei J, Chen Z. Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions. J Mater Chem A. 2016;4:13742–5.

    Article  CAS  Google Scholar 

  38. Zhang J, Li Z, Yin G, Wang DY. Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and β-cyclodextrin hybrids in achieving fire safe epoxy. Compos Commun. 2020;23:100594.

    Article  Google Scholar 

  39. Wei J, Hu Y, Liang Y, Kong B, Kong B, Zhang J, Bao Q, Simon GP, Jiang SP, Wang H. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv Funct Mater. 2015;25:5768–77.

    Article  CAS  Google Scholar 

  40. Guo J, Gao M, Nie J, Yin F, Ma G. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J Colloid Interface Sci. 2019;544:112–20.

    Article  CAS  Google Scholar 

  41. Li Y, Yin J, An L, Lu M, Sun K, Zhao YQ, Gao D, Cheng F, Xi P. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14:1801070.

    Article  CAS  Google Scholar 

  42. Huang L, Zhang Y, Shang C, Wang X, Zhou G, Ou JZ, Wang Y. ZnS nanotubes/carbon cloth as a reversible and high-capacity anode material for lithium-ion batteries. Chemelectrochem. 2019;6:461–6.

    Article  CAS  Google Scholar 

  43. Wang L, Fang M, Liu J, He J, Deng L, Li J, Lei J. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 2015;5:50942–54.

    Article  CAS  Google Scholar 

  44. Yoo J, Lee S, Lee CK, Kim C, Fujigaya T, Park HJ, Nakashima N, Shim JK. Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core-shell structures on carbon nanotubes. RSC Adv. 2014;4:49614–9.

    Article  CAS  Google Scholar 

  45. Mao M, Jiang L, Wu L, Zhang M, Wang T. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries. J Mater Chem A. 2015;3:13384–9.

    Article  CAS  Google Scholar 

  46. Fu Y, Zhang Z, Yang X, Gan Y, Chen W. ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv. 2015;5:86941–4.

    Article  CAS  Google Scholar 

  47. Wang H, Wang J, Cao D, Gu H, Li B, Lu X, Han X, Rogach AL, Niu C. Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance. J Mater Chem A. 2017;5:6817–24.

    Article  CAS  Google Scholar 

  48. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25:214–20.

    Article  CAS  Google Scholar 

  49. Vázquez-Sánchez EE, Robledo-Cabrera A, Tong X, López-Valdivieso A. Raman spectroscopy characterization of some Cu, Fe and Zn sulfides and their relevant surface chemical species for flotation. Physicochem Probl Miner Process. 2020;56:483–92.

    Article  CAS  Google Scholar 

  50. Hao YC, Guo Y, Chen LW, Shu M, Wang XY, Bu TA, Gao W, Zhang N, Su X, Feng X, Zhou JW, Wang B, Hu CW, Yin AX, Si R, Zhang YW, Yan CH. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat Catal. 2019;2:448–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Natural Science Foundation of Shanghai (20ZR1401400, 18ZR1401600), Shanghai Scientific and Technological Innovation Project (18JC1410600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Wu or Yue-E Miao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 855 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zong, W., Ouyang, Y. et al. Carbon Fiber Supported Binary Metal Sulfide Catalysts with Multi-Dimensional Structures for Electrocatalytic Nitrogen Reduction Reactions Over a Wide pH Range. Adv. Fiber Mater. 3, 229–238 (2021). https://doi.org/10.1007/s42765-021-00072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00072-0

Keywords

Navigation