Skip to main content
Log in

Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A modification of the fast algorithm for the bandwidth selection of kernel functions in a nonparametric probability density estimate of the Rosenblatt–Parzen type is proposed. Fast algorithms for optimizing kernel estimates of probability densities make it possible to significantly reduce the calculation time when selecting their smoothing parameters (bandwidths) in comparison with the traditional approach, which is especially important when processing large statistical data. The method is based on the analysis of the formula for the optimal calculation of the smoothing parameter of kernel functions and the discovered dependence between the nonlinear functional on the second derivative of the reconstructed probability density and the antikurtosis coefficient. The proposed algorithm for the bandwidth selection provides a decrease in the probability density approximation error in comparison with the traditional approach. The findings are confirmed by the results of computational experiments. Special attention is paid to the dependence of these properties on the amount of initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat. 9, 65–78 (1982).

    MathSciNet  MATH  Google Scholar 

  2. A. W. Bowman, ‘‘A comparative study of some kernel-based non-parametric density estimators,’’ J. Stat. Comput. Simul. 21, 313–327 (1982). https://doi.org/10.1080/00949658508810822

    Article  MATH  Google Scholar 

  3. P. Hall, ‘‘Large-sample optimality of least squares cross-validation in density estimation,’’ Ann. Statist. 1983. 11 (4), 1156–1174.

    MathSciNet  MATH  Google Scholar 

  4. A. V. Lapko and V. A. Lapko, ‘‘Analysis of optimization methods for nonparametric estimation of the probability density with respect to the blur factor of kernel functions,’’ Meas. Tech. 60, 515–522 (2017). https://doi.org/10.1007/s11018-017-1228-x

    Article  Google Scholar 

  5. E. S. Nezhevenko, ‘‘Neural network classification of difficult-to-distinguish types of vegetation on the basis of hyperspectral features,’’ Optoelectron., Instrum. Data Process. 55, 263–270 (2019). https://doi.org/10.3103/S8756699019030087

    Article  ADS  Google Scholar 

  6. A. V. Lapko, V. A. Lapko, S. T. Im, V. P. Tuboltsev, and V. A. Avdeenok, ‘‘Nonparametric algorithm of identification of classes corresponding to single-mode fragments of the probability density of multidimensional random variables,’’ Optoelectron., Instrum. Data Process. 55, 230–236 (2019). https://doi.org/10.3103/S8756699019030038

    Article  ADS  Google Scholar 

  7. A. V. Lapko and V. A. Lapko, ‘‘A technique for testing hypotheses for distributions of multidimensional spectral data using a nonparametric pattern recognition algorithm,’’ Comput. Optics 43, 238–244 (2019). https://doi.org/10.18287/2412-6179-2019-43-2-238-244

    Article  ADS  Google Scholar 

  8. S. M. Borzov and O. I. Potaturkin, ‘‘Spectral-spatial methods for hyperspectral image classification. Review,’’ Optoelectron., Instrum. Data Process. 54, 582–599 (2018). https://doi.org/10.3103/S8756699018060079

    Article  ADS  Google Scholar 

  9. A. V. Lapko and V. A. Lapko, ‘‘Fast algorithm for choosing kernel function blur coefficients in a nonparametric probability density estimate,’’ Meas. Tech. 61, 540–545 (2018). https://doi.org/10.32446/0368-1025it-2018-6-16-20

    Article  Google Scholar 

  10. A. V. Lapko and V. A. Lapko, ‘‘Fast selection of blur coefficients in a multidimensional nonparametric pattern recognition algorithm,’’ Meas. Techn. 62, 665–672 (2018). https://doi.org/10.32446/0368-1025it.2018-10-19-23

    Article  Google Scholar 

  11. A. V. Lapko and V. A. Lapko, ‘‘Integral estimate from the square of the probability density for a one-dimensional random variable,’’ Meas. Tech. (2020). doi 10.1007/s11018-020-01820-1

  12. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons, New Jersey, 2015). https://doi.org/10.1002/9780470316849

  13. A. V. Lapko and V. A. Lapko, ‘‘Dependencies between histogram parameters and the kernel estimate of the probability density of a multidimensional random variable,’’ Meas. Tech. 62, 945–952 (2020). https://doi.org/10.32446/0368-1025it.2019-9-3-8

    Article  Google Scholar 

  14. V. A. Epanechnikov, ‘‘Non-Parametric Estimation of a Multivariate Probability Density,’’ Theory Probab. Its Appl. 14, 153–158 (1969).

    Article  MathSciNet  Google Scholar 

  15. A. S. Sharakshane, I. G. Zheleznov, and V. A. Ivnitskii, Complex Systems (Vysshaya Shkola, Moscow, 1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lapko.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapko, A.V., Lapko, V.A. Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation. Optoelectron.Instrument.Proc. 56, 566–572 (2020). https://doi.org/10.3103/S8756699020060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020060102

Keywords:

Navigation