Skip to main content
Log in

A Numerical Algorithm for Solving Optimal Control Problems with Terminal Constraints for Dynamical Systems

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

An algorithm for solving an optimal control problem with terminal constraints is developed. The optimal control problem with terminal constraints and constraints on the control parameter is formulated. To solve the problem, a numerical algorithm based on the penalty method and genetic algorithms is described. A computational experiment is performed for the synthesis reaction of phthalic anhydride in order to get the maximum yield of the reaction product under terminal constraints. The optimal temperature regime and optimal concentrations of reagents are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. A. Yu. Gornov, ‘‘Algorithms for optimal control problems with terminal restrictions,’’ Comput. Technol. 13 (4), 44–50 (2008).

  2. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976).

  3. V. V. Dikusar and A. A. Milyutin, Qualitative and Numerical Methods in the Maximum Principle (Nauka, Moscow, 1989).

    MATH  Google Scholar 

  4. E. Ya. Rapoport and Yu. E. Pleshivtseva, ‘‘Optimal control of nonlinear objects of engineering thermophysics,’’ Optoelectron., Instrum. Data Process. 48, 429–437 (2012). https://doi.org/10.3103/S8756699012050019

    Article  Google Scholar 

  5. F. P. Vasil’ev, Numerical Methods for Solving Extreme Problems (Nauka, Moscow, 1988).

    Google Scholar 

  6. G. M. Ostrovskii, N. N. Ziyatdinov, and I. I. Emel’yanov, ‘‘Synthesis of optimal systems of simple distillation columns with heat recovery,’’ Dokl. Chem. 461, 89–92 (2015). https://doi.org/10.1134/S0012500815030052

    Article  Google Scholar 

  7. V. I. Van’ko, O. V. Ermoshina, and G. N. Kuvyrkin, Variational Calculus and Optimal Control (Bauman Tech. Univ., Moscow, 2006).

    Google Scholar 

  8. L. T. Biegler, ‘‘Integrated optimization strategies for dynamic process operations,’’ Theor. Found. Chem. Eng. 51, 910–927 (2017). https://doi.org/10.1134/S004057951706001X

    Article  Google Scholar 

  9. A. F. Antipin, ‘‘Improving response time of real time control systems based on multidimensional interval-logical controllers,’’ Autom. Remote Control 76, 480–486 (2015). https://doi.org/10.1134/S000511791503011X

    Article  MathSciNet  MATH  Google Scholar 

  10. N. A. Sedova, ‘‘Fuzzy production model for initial evaluating of the risk of collsions,’’ World Transp. Transp. 13 (2), 200–206 (2015).

    Google Scholar 

  11. A. H. Wright, ‘‘Genetic algorithms for real parameter optimization,’’ Found. Genet. Algorithms 1, 205–218 (1991). https://doi.org/10.1016/B978-0-08-050684-5.50016-1

    Article  MathSciNet  Google Scholar 

  12. A. V. Panteleev and D. V. Skavinskaya, Global Optimization Methods. Metaheuristic Strategies and Algorithms (Vuzovskaya Kniga, Moscow, 2019).

    Google Scholar 

  13. E. V. Antipina and A. F. Antipin, ‘‘Algorithm for computation of optimal initial concentrations of chemical reactions,’’ Bull. Technol. Univ. 20 (13), 84–87 (2017).

    Google Scholar 

  14. A. V. Panteleev and T. A. Letova, Optimization Methods in Examples and Problems (Vysshaya Shkola, Moscow, 2005).

    Google Scholar 

  15. E. G. Klimko, ‘‘Genetic algorithm as a kind of evolution algorithm,’’ Radioelectron. Inf., No. 2, 125–128 (2002).

  16. A. A. Andreyev, ‘‘Use of genetic algorithms in optimization of non-linear functions,’’ Tambov Univ. Reports, Ser. Natur. Techn. Sci. 14 (5), 1036–1040 (2009).

  17. A. A. Avdeev, ‘‘Application of genetic algorithms to optimization problems,’’ Proc. TUSUR Univ., No. 2, 110–111 (2008).

    Google Scholar 

  18. M. Yu. Kataev, A. V. Lavygina, I. A. Khodashinskii, and D. A. Epshtein, ‘‘Fuzzy approximator of atmospheric temperature fields,’’ Optoelectron., Instrum. Data Process. 46, 134–141 (2010). https://doi.org/10.3103/S8756699010020044

    Article  Google Scholar 

  19. E. V. Antipina, S. A. Mustafina, and A. F. Antipin, ‘‘Numerical algorithm of indetifying the kinetic model of a chemical reaction,’’ Bull. Technol. Univ. 22 (9), 13–17 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Antipina.

Additional information

Translated by I. Tselishcheva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipina, E.V., Mustafina, S.I., Antipin, A.F. et al. A Numerical Algorithm for Solving Optimal Control Problems with Terminal Constraints for Dynamical Systems. Optoelectron.Instrument.Proc. 56, 671–678 (2020). https://doi.org/10.3103/S8756699020060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020060035

Keywords:

Navigation