Skip to main content
Log in

Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The concept of magnetohydrodynamic nonlinear mixed convective nanoliquid flow over a vertical rough cone finds applications in science and engineering fields, especially in aerospace and thermal engineering as well as in other designing and manufacturing processes. In the present investigation, the cone surface roughness, which arises during the manufacturing processes, is modelled using sine wave forms. A uniform magnetic field is applied to analyse its impact on the transport characteristics of the flow. The study of such flow problems involving physical parameters such as nonlinear convection, permeable roughness, nanoparticles and external magnetic field is an innovative approach. The flow problem is modelled using nonlinear coupled partial differential equations which are transformed into dimensionless form by using Mangler’s non-similar transformations. The resulting equations are solved by utilizing the quasilinearization technique in combination with the implicit finite difference scheme. Effects of the different physical parameters on profiles and gradients are analysed by the graphical representations. Findings show that the higher values of the nonlinear mixed convection parameter will increase nanofluid velocity and magnitude of the coefficient of surface friction. Prominent sinusoidal oscillations are found in the surface gradients away from the apex of the cone due to the surface roughness effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Suction/injection

B 0 :

Magnetic field strength

C f :

Skin friction coefficient

\(C_{{{\text{nf}}}}\) :

Heat capacity of nanofluid (J K1)

\(C_{pp}\) :

Specific heat capacity of nanoparticles (J K1)

\(D_{{\text{B}}}\) :

Brownian diffusion coefficient (m2 s1)

\(D_{{\text{T}}}\) :

Thermophoretic coefficient (m2 s1)

f :

Dimensionless stream function

F :

Dimensionless velocity

g :

Acceleration due to gravity (m s2)

G :

Dimensionless temperature

NSh:

Nanoparticle Sherwood number

Nu:

Nusselt number

S :

Dimensionless volume fraction profile

T :

Temperature (K)

\(T_{{\text{w}}} ,T_{\infty }\) :

Temperature at the wall and ambient conditions (K)

u :

x-component of velocity(m s1)

U 0 :

Reference velocity (m s1)

U w :

Wall velocity (m s1)

\(U_{\infty }\) :

Free stream velocity constant (m s1)

v :

y-component of velocity (m s1)

x :

Distance along x coordinate (m)

y :

Distance along y-coordinate (m)

\(g\) :

Acceleration due to gravity (m s2)

\(\sigma\) :

Electrical conductivity of the fluid (S m1)

\(\rho\) :

Density of fluid (Kg m3)

\(\psi\) :

Dimensionless stream function

\(\nu\) :

Kinematic viscosity (m2 s1)

\(\phi\) :

Nanoparticle volume fraction

\(\gamma\) :

Nonlinear mixed convection parameter

\(\beta_{1}\) :

Nonlinear volumetric coefficient of thermal expansion of nanofluid (K1)

\(\alpha\) :

Small parameter

\(\rho_{{\text{f}}}\) :

Density of base fluid (Kg m3)

\(\rho_{{\text{p}}}\) :

Nanoparticle mass density (Kg m3)

\(\beta_{0}\) :

The volumetric coefficient of thermal expansion of nanofluid (K1)

\(\alpha_{m}\) :

Thermal diffusivity

\(\phi_{{\text{w}}}\) :

Nanoparticle volume fraction at the wall

\(\phi_{\infty }\) :

Ambient nanoparticle volume fraction

\(\xi ,\,\eta\) :

Transformed variables

\(\xi ,\,\eta\) :

Partial derivatives with respect to these variables

0:

Condition at the wall

\(\infty\) :

Free stream, respectively

w:

Conditions at the surface wall

nf:

Nanofluid

References

  1. P C Sinha Chem. Eng. Sci. 24 33 (1969)

    Article  Google Scholar 

  2. K Vajravelu and K S Sastri Int. J. Heat Mass Transf. 20 655 (1977)

    Article  ADS  Google Scholar 

  3. S Shaw, P K Kameswaran and P Sibanda Bound. Value Prob. 16 2 (2016) https://doi.org/10.1186/s13661-015-0506-2

    Article  Google Scholar 

  4. M Bandaru, M M Rashidi and H Raju Therm. Sci. 21 2781 (2017)

    Article  Google Scholar 

  5. T Hayat, S Naz, M Waqas and A Alsaedi Appl. Math. Mech. 39 1373 (2018)

    Article  Google Scholar 

  6. I Uddin et al AIP Adv. 9 055210 (2019)

    Article  ADS  Google Scholar 

  7. J W Smith and N Epstein Am. Inst. Chem. Eng. J. 3 242 (1957)

    Article  Google Scholar 

  8. D W Savage and J E Myers Am. Inst. Chem. Eng. J. 9 694 (1963)

    Article  Google Scholar 

  9. D Gupta, S C Solanki and J S Saini Sol. Energy. 51 31 (1993)

    Article  ADS  Google Scholar 

  10. Y Xing, T Zhi, L Haiwang and T Yitu Chin. J. Aeronaut. 29 1575 (2016)

    Article  Google Scholar 

  11. Y Zhang Int. J. Heat Mass Transf. 100 295 (2016)

    Article  Google Scholar 

  12. P M Patil, S H Doddagoudar and P S Hiremath Int. J. Numer. Methods Heat Fluid Flow. 29 2146 (2019)

    Article  Google Scholar 

  13. P M Patil, M Kulkarni and P S Hiremath Chin. J. Phys. 64 203–218 (2020)

    Article  Google Scholar 

  14. P M Patil, A Shashikant and P S Hiremath Int. J. Hydrogen Energy. 44 17061 (2019)

    Article  Google Scholar 

  15. P M Patil and M Kulkarni Rev. Mex. Fis. 66 153 (2020)

    Article  Google Scholar 

  16. P M Patil, H F Shankar, P S Hiremath and E Momoniat Alexandria Eng. J. 60 1043 (2021)

    Article  Google Scholar 

  17. S U S Choi and J A Eastman, ASME International Mechanical Engineering Congress Exposition San Francisco CA FED/231 99 (1995)

  18. F Mebarek-Oudina Heat Transf. Asian Res. 48 135 (2018) https://doi.org/10.1002/htj.21375

    Article  Google Scholar 

  19. U Khan, A Zaib and F Mebarek-Oudina Arab. J. Sci. Eng. 45 9061 (2020)

    Article  Google Scholar 

  20. F Mebarek-Oudina, A Aissa, B Mahanthesh and H F Oztope Int. Commun. Heat Mass Transf. 117 104737 (2020)

    Article  Google Scholar 

  21. F M Abbasi, M Gula and S A Shehzad Int. Commun. Heat Mass Transf. 116 104651 (2020)

    Article  Google Scholar 

  22. J Iqbal, F M Abbasi and S A Shehzad Int. Commun. Heat Mass Transf. 117 104774 (2020)

    Article  Google Scholar 

  23. Y Akbar, I Shanakhat, F M Abbasi and S A Shehzad Phys. Scr. 95 115201 (2020)

    Article  ADS  Google Scholar 

  24. P M Patil, M Kulkarni and P S Hiremath Arab. J. Sci. Eng. 45 1219 (2020)

    Article  Google Scholar 

  25. S Marzougui, F Mebarek-Oudina, A Assia, M Magherbi, Z Shah and K Ramesh J. Therm. Anal. Calorim. (2020) https://doi.org/10.1007/s10973-020-09662-3

    Article  Google Scholar 

  26. J Raza, F Mebarek-Oudina, P Ram and S Sharma Defect and Diffusion Forum 401 92 (2020) https://doi.org/10.4028/www.scientific.net/DDF.401.92

    Article  Google Scholar 

  27. F Mebarek-Oudina, N K Reddy and M Sankar Advances in Fluid Dynamics. In: B RushiKumar, R Sivaraj, J Prakash (eds.) Lecture Notes in Mechanical Engineering. Springer, Singapore (2021) https://doi.org/10.1007/978-981-15-4308-1_70

    Chapter  Google Scholar 

  28. J Buongiorno J. Heat Transf. 128 140 (2006)

    Article  Google Scholar 

  29. A J Chamkha and A M Rashad The Can. J. Chem. Eng. (2013) https://doi.org/10.1002/cjce.21894

    Article  Google Scholar 

  30. S Nadeem and S Saleem Appl. Nanosci. 4 405 (2014)

    Article  ADS  Google Scholar 

  31. R Dhanai, P Rana and L Kumar Powder Technol. 288 140 (2016)

    Article  Google Scholar 

  32. M V S Rao, K Gangadhar and P L N Varma Indian J. Phys. 92 1577 (2018)

    Article  ADS  Google Scholar 

  33. Y S Daniel, Z A Aziz, Z Ismail, A Bahar and F Salah Indian J. Phys. 94 195 (2020)

    Article  ADS  Google Scholar 

  34. M P Mkhatshwa, S S Motsa, M S Ayano and P Sibanda Case Stud. Therm. Eng. 18 100598 (2020)

    Article  Google Scholar 

  35. P M Patil, S Roy and I Pop Chem. Eng. Commun. 199 658 (2012)

    Article  Google Scholar 

  36. P M Patil, H S Ramane, S Roy, V Hindasageri and E Momoniat Int. J. Heat Mass. Transf. 104 392 (2017)

    Article  Google Scholar 

  37. H R Pasaribu and D J Schipper Tribol. Lett. 17 967 (2004)

    Article  Google Scholar 

  38. H Schlichting and K Gersten Boundary Layer Theory. (New York: Springer) (2000)

    Book  Google Scholar 

  39. R Ravindran, S Roy and E Momoniat Int. J. Numer. Methods Heat Fluid Flow. 19 432 (2009)

    Article  Google Scholar 

  40. S Saleem and S Nadeem J. Hydrodynam. B. 27 616 (2015)

    Article  ADS  Google Scholar 

  41. R S Varga Matrix Iterative Analysis. (Englewood Cliffs: Prentice-Hall) (2000)

    Book  Google Scholar 

  42. M Y Malik, H Jamil, T Salahuddin, S Bilal, K U Rehman and Z Mustafa Results. Phys. 6 1126 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.M., Kulkarni, M. & Tonannavar, J.R. Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone. Indian J Phys 96, 1453–1464 (2022). https://doi.org/10.1007/s12648-021-02073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02073-6

Keywords

Navigation