Skip to main content
Log in

Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide-cavity-graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide-cavity-graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide-cavity-graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Chipintegrated ultrafast graphene photo-detector with high responsivity, Nat. Photon. 7(11), 883 (2013)

    Article  ADS  Google Scholar 

  2. J. Liang, W. Hu, Z. Ye, L. Liao, Z. Li, X. Chen, and W. Lu, Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure, J. Appl. Phys. 115(18), 184504 (2014)

    Article  ADS  Google Scholar 

  3. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, Broadbandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide, Opt. Express 17(16), 13727 (2009)

    Article  ADS  Google Scholar 

  4. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few-layer MoS2 phototransistors with au nanostructure arrays, Small 11(20), 2392 (2015)

    Article  Google Scholar 

  5. H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, Tunable mid-infrared plasmonic band-pass filter based on a single graphene ribbon with cavities, J. Appl. Phys. 116(22), 224505 (2014)

    Article  ADS  Google Scholar 

  6. Z. Shi, L. Gan, T. Xiao, H. Guo, and Z. Li, All-optical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)

    Article  Google Scholar 

  7. Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface adsorbed layers, Nano Lett. 14(3), 1573 (2014)

    Article  ADS  Google Scholar 

  8. X. Huang, L. Liu, S. Zhou, and J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)

    Article  ADS  Google Scholar 

  9. K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    Article  ADS  Google Scholar 

  10. Y. Fan, Z. Wei, Z. Zhang, and H. Li, Enhancing infrared extinction and absorption in a monolayer graphene ribbon by harvesting the electric dipolar mode of split ring resonators, Opt. Lett. 38(24), 5410 (2013)

    Article  ADS  Google Scholar 

  11. X. Hu and J. Wang, High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene, Opt. Lett. 40(23), 5538 (2015)

    Article  ADS  Google Scholar 

  12. S. Yang, R. Zhou, D. Liu, Q. Lin, and S. Li, Lifetime of enhanced graphene surface plasmon and superstrate sensitivity, Plasmonics 15(4), 1103 (2020)

    Article  Google Scholar 

  13. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)

    Article  Google Scholar 

  14. P. Liu, W. Cai, L. L. Wang, X. Zhang, and J. Xu, Tunable terahertz optical antennas based on graphene ring structures, Appl. Phys. Lett. 100(15), 153111 (2012)

    Article  ADS  Google Scholar 

  15. V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, Oblique terahertz plasmons in graphene nanoribbon arrays, Phys. Rev. B 81(7), 073404 (2010)

    Article  ADS  Google Scholar 

  16. R. Zhou, S. Yang, D. Liu, and G. Cao, Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays, Opt. Express 25(25), 31478 (2017)

    Article  ADS  Google Scholar 

  17. B. Wang, X. Zhang, F. J. Garcíavidal, X. Yuan, and J. Teng, Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays, Phys. Rev. Lett. 109(7), 073901 (2012)

    Article  ADS  Google Scholar 

  18. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett. 12(11), 5626 (2012)

    Article  ADS  Google Scholar 

  19. J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, Absorption enhancement and total absorption in a graphene-waveguide hybrid structure, AIP Adv. 7(2), 025101 (2017)

    Article  ADS  Google Scholar 

  20. T. Xiao, L. Gan, and Z. Li, Graphene surface plasmon polaritons transport on curved substrates, Photon. Res. 3(6), 300 (2015)

    Article  Google Scholar 

  21. W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)

    Article  Google Scholar 

  22. H. Lu, X. Liu, D. Mao, and G. Wang, Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators, Opt. Lett. 37(18), 3780 (2012)

    Article  ADS  Google Scholar 

  23. B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photodetection in vertical Au-graphene hybrid nanostructure, Laser Photon. Rev. 11(1), 1600148 (2017)

    Article  ADS  Google Scholar 

  24. K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge, W. Huang, Z. Lin, Z. Guo, Y. Zhang, and H. Zhang, In situ preparation of CsPbBr3/black phosphorus heterostructure with optimized interface and photodetector application, Nanoscale 11(36), 16852 (2019)

    Article  Google Scholar 

  25. B. Wang, S. Zhong, Z. Zhang, Z. Zheng, Y. Zhang, and H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors, Appl. Mater. Today 15, 115 (2019)

    Article  Google Scholar 

  26. H. Shan, Y. Yu, R. Zhang, R. Cheng, D. Zhang, Y. Luo, X. Wang, B. Li, S. Zu, F. Lin, Z. Liu, K. Chang, and Z. Fang, Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures, Mater. Today 24, 10 (2019)

    Article  Google Scholar 

  27. W. Huang, X. Jiang, Y. Wang, F. Zhang, Y. Ge, Y. Zhang, L. Wu, D. Ma, Z. Li, R. Wang, Z. Huang, X. Dai, Y. Xiang, J. Li, and H. Zhang, Two-dimensional beta-lead oxide quantum dots, Nanoscale 10(44), 20540 (2018)

    Article  Google Scholar 

  28. Y. Ge, W. Huang, F. Yang, J. Liu, C. Wang, Y. Wang, J. Guo, F. Zhang, Y. Song, S. Xu, D. Fan, and H. Zhang, Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics, Nanoscale 11(14), 6828 (2019)

    Article  Google Scholar 

  29. C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber, Appl. Phys. Rev. 6(4), 041304 (2019)

    Article  ADS  Google Scholar 

  30. G. Zhang, X. Tang, X. Fu, W. Chen, B. Shabbir, H. Zhang, Q. Liu, and M. Gong, 2D group-VA fluorinated antimonene: Synthesis and saturable absorption, Nanoscale 11(4), 1762 (2019)

    Article  Google Scholar 

  31. M. Luo, T. Fan, Y. Zhou, H. Zhang, and L. Mei, 2D black phosphorus-based biomedical applications, Adv. Funct. Mater. 29(13), 1808306 (2019)

    Article  Google Scholar 

  32. M. Qiu, W. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. Liu, H. Zhang, and J. S. Kim, Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications, Chem. Soc. Rev. 47(15), 5588 (2018)

    Article  Google Scholar 

  33. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  34. W. Zhang, H. Liu, J. Lu, L. Ni, H. Liu, Q. Li, M. Qiu, B. Xu, T. Lee, Z. Zhao, X. Wang, M. Wang, T. Wang, A. Offenhäusser, D. Mayer, W. T. Hwang, and D. Xiang, Atomic switches of metallic point contacts by plasmonic heating, Light Sci. Appl. 8(1), 34 (2019)

    Article  ADS  Google Scholar 

  35. P. Ghosh, J. Lu, Z. Chen, H. Yang, M. Qiu, and Q. Li, Photothermal-induced nanowelding of metal-semiconductor heterojunction in integrated nanowire units, Adv. Electron. Mater. 4(5), 1700614 (2018)

    Article  Google Scholar 

  36. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, and H. Xie, Recent progress of two dimensional thermoelectric materials, Nano-Micro Lett. 12(1), 36 (2020)

    Article  ADS  Google Scholar 

  37. D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector, Appl. Mater. Interfaces 11(4), 4278 (2019)

    Article  Google Scholar 

  38. M. Zhao, W. Xia, Y. Wang, M. Luo, Z. Tian, Y. Guo, W. Hu, and J. Xue, Nb2SiTe4: A stable narrow-gap two-dimensional material with ambipolar transport and midinfrared response, ACS Nano 13(9), 10705 (2019)

    Article  Google Scholar 

  39. X. Tang, H. Chen, J. S. Ponraj, S. C. Dhanabalan, Q. Xiao, D. Fan, and H. Zhang, Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots, Adv. Sci. 5(9), 1800420 (2018)

    Article  Google Scholar 

  40. M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, and W. Hu, Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability, ACS Nano 13, 2511 (2019)

    Google Scholar 

  41. R. Zhou, J. Peng, S. Yang, D. Liu, Y. Xiao, and G. Cao, Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application, Nanoscale 10(39), 18878 (2018)

    Article  Google Scholar 

  42. K. Khan, A. K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, and Z. Guo, Recent developments in emerging two dimensional materials and their applications, J. Mater. Chem. C 8(2), 387 (2020)

    Article  Google Scholar 

  43. L. Zhang, T. Gong, H. Wang, Z. Guo, and H. Zhang, Memristive devices based on emerging two dimensional materials beyond graphene, Nanoscale 11(26), 12413 (2019)

    Article  Google Scholar 

  44. S. Xia, X. Zhai, L. Wang, B. Sun, J. Liu, and S. Wen, Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers, Opt. Express 24(16), 17886 (2016)

    Article  ADS  Google Scholar 

  45. S. Xia, X. Zhai, L. Wang, and S. Wen, Plasmonically induced transparency in double-layered graphene nanoribbons, Photon. Res. 6(7), 692 (2018)

    Article  Google Scholar 

  46. J. Guan, S. Xia, Z. Zhang, J. Wu, H. Meng, J. Yue, X. Zhai, L. Wang, and S. Wen, Two switchable plasmonically induced transparency effects in a system with distinct graphene resonators, Nanoscale Res. Lett. 15(1), 142 (2020)

    Article  ADS  Google Scholar 

  47. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Opt. Express 18(8), 8367 (2010)

    Article  ADS  Google Scholar 

  48. H. Xu, H. Li, B. Li, Z. He, Z. Chen, and M. Zheng, Influential and theoretical analysis of nano-defect in the stub resonator, Sci. Rep. 6(1), 30877 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2018A030313684) and the Scientific Research Fund of Guangdong Provincial Education Department (Nos. 2019KZDXM061, 2019KQNCX099, and 2020ZDZX2059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sa Yang or Ren-Long Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhou, RL. & Huang, YJ. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity. Front. Phys. 16, 43504 (2021). https://doi.org/10.1007/s11467-021-1060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1060-2

Keywords

Navigation