Skip to main content
Log in

Development of Urea Uptake and Release Studies Using N, N-Dimethylacrylamide/Maleic Acid/Citric Acid Based Macrogel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recently, the use of polymers in agricultural and horticultural applications has been seen as a solution to reduce water consumption and excess fertilizer use in particularly. In this study, macrogels were synthesized to allow fertilizer species and water to be controlled and released in the soil. A natural macrogel derived from N,N-Dimethylacrylamide (DMAAm), Maleic Acid (MA) and Citric Acid (CA) was selected because of its ability to absorb/release a large amount of water and to have modifiable functional groups. Urea, which is an abundant source of nitrogen, was chosen to model the fertilizer. The macrogel was prepared using easily available, low-cost, modifiable starting materials by redox polymerization technique. p(DMAAm-co-MA-co-CA) (DMC1) surface was modified by hydrochloric acid (HCl) and sodium hydroxide (NaOH) to obtain p(DMAAm-co-MA-co-CA)/HCl (DMC2) and p(DMAAm-co-MA-co-CA)/NaOH (DMC3), which have positively and negatively charged, respectively. After being analyzed for intermolecular interactions (Fourier-Transform Infrared Spectroscopy,FT-IR) and thermal properties (Thermogravimetric Analysis,TGA), the macrogels were tested in terms of sorption isotherms and thermodynamic parameters. However, in order to examine the urea release mechanism, the macrogels were tested using four release models such as Zero Order Kinetic Model(Z-O), First Order Kinetic Model(F-O), Higuchi(H) and the Korsmeyer-Peppas(K-P) power law. Cumulative urea release values for DMC1, DMC2 and DMC3 macrogels were calculated as 100% at pH 4 and 10, 100% at pH 6, 8 and 10, 100% at pH 4, 6, 8 and 10, respectively. Analyzes confirmed that synthesized macrogels can be good water holder for soil and can be a slow release of urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2006) Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. J Appl Polym Sci 101:3955–3962

    Article  CAS  Google Scholar 

  2. Alemzadeh I, Vossoughi M (2002) Controlled release of paraquat from poly vinyl alcohol hydrogel. Chem Eng Process 41:707–710

    Article  CAS  Google Scholar 

  3. Alpaslan D, Ersen Dudu T, Aktas N (2018) Synthesis, characterization and modification of novel food packaging material from dimethyl acrylamide/gelatin and purple cabbage extract. MANAS J Eng 6(2):15–33

    Google Scholar 

  4. Alpaslan D, Ersen Dudu T, Aktas N (2021) Synthesis of smart food packaging from poly(gelatin-co-dimethyl acrylamide)/citric acid-red apple peel extract. Soft Mater. https://doi.org/10.1080/1539445X.2020.1765802

    Article  Google Scholar 

  5. Alpaslan D, Ersen Dudu T, Kubilay S, Aktas N (2020) Synthesis and characterization of biocompatible poly(maleic acid-co-citric acid) microparticles as a smart carrier for thiamine. Polym Bull. https://doi.org/10.1007/s00289-020-03405-y

    Article  Google Scholar 

  6. Alpaslan D, Ersen Dudu T, Sahiner N, Aktas N (2020) Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Mater Sci Eng: C 108:110339. https://doi.org/10.1016/j.msec.2019.110339

    Article  CAS  Google Scholar 

  7. Amin MT, Alazba AA, Shafiq M (2015) Adsorptive removal of reactive black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics. Sustainability 7:15302–15318

    Article  CAS  Google Scholar 

  8. Azeem B, KuShaari KZ, Man Z, Irfan SA (2018) Parametric study of tumbling fluidized bed to evaluate nitrogen release characteristics of biopolymer-coated controlled release urea. Chem Eng Commun 205(10):1397–1414

    Article  CAS  Google Scholar 

  9. Bajpai SK (2001) Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. J Appl Polym Sci 80:2782–2789

    Article  CAS  Google Scholar 

  10. Bajpai SK, Johnson S (2005) Superabsorbent hydrogels for removal of divalent toxic ions. Part I: synthesis and swelling characterization. React Funct Polym 62:271–283

    Article  CAS  Google Scholar 

  11. Byung-Su K, Young-Sang C, Hyun-Ku H (1996) Controlled release of urea from rosin-coated fertilizer particles. Ind Eng Chem Res 35:250–257

    Article  Google Scholar 

  12. Caykara T, Kiper S, Demirel G (2006) Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: Synthesis, swelling and interaction with ionic surfactants. Eur Polym J 42:348–355

    Article  CAS  Google Scholar 

  13. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6:14–22

    Article  Google Scholar 

  14. Chen S, Yang M, Han Y, Liu H, Zou H (2021) Hydrophobically modified sustainable bio-based polyurethane for controllable release of coated urea. Eur Polym J 142:110114. https://doi.org/10.1016/j.eurpolymj.2020.110114

    Article  CAS  Google Scholar 

  15. Constantin M, Asmarandei I, Harabagiu V, Ghimici L, Ascenzi P, Fundueanu G (2013) Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres. Carbohydr Polym 91:74–84

    Article  CAS  PubMed  Google Scholar 

  16. Dakiky M, Khamis M, Manassra A (2002) Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  17. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  18. El-Refaie K, Sakran MA (1996) Controlled release formulation of agrochemicals from calcium alginate. Ind Eng Chem Res 35:3726–3729

    Article  Google Scholar 

  19. Ersen Dudu T, Alpaslan D, Uzun Y, Aktas N (2017) Utilization of hydrogel-fungus composites as absorbents for removal of textile dyes from aqueous media. Int J Environ Res 11:557–568

    Article  CAS  Google Scholar 

  20. Ersen Dudu T, Alpaslan D, Aktas N (2019) Urea uptake and release by novel macrogels from dimethylacrylamide. Commun Soil Sci Plant Anal 50(18):2278–2293

    Article  CAS  Google Scholar 

  21. Ersen Dudu T, Sahiner M, Alpaslan D, Demirci S, Aktas N (2015) Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly (acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels. J Environ Manage 161:243–251

    Article  CAS  Google Scholar 

  22. Freundlich HMF (1906) Uber die adsorption in losungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  23. Gibbs JW (1928) The collected works of J. Willard Gibbs. New York: Longmans, Green and Co 1:55–349

    Google Scholar 

  24. Goodhart FW, Mccoy RH, Ninger FC (1974) Release of a water-soluble drug from a wax matrix timed-release tablet. J Pharm Sci 63:1748–1751

    Article  CAS  PubMed  Google Scholar 

  25. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44:4206–4211

    Article  CAS  Google Scholar 

  26. Han X, Chen S, Hu X (2009) Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 240:21–26

    Article  CAS  Google Scholar 

  27. Hermida L, Agustian J (2019) Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ Technol Innov 13:113–121

    Article  Google Scholar 

  28. Higuchi T (1963) Mechanisms of sustained action medication: theoretical analysis of the rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim S, Nawwar GAM, Sultan M (2016) Development of bio-based polymeric hydrogel: Green, sustainable and low cost plant fertilizer packaging material. J Environ Chem Eng 4:203–210

    Article  CAS  Google Scholar 

  30. Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Ind 15:14–27

    Article  Google Scholar 

  31. Jia C, Zhang M, Lu P (2020) Preparation and characterization of polyurethane-/MMT nanocomposite-coated urea as controlled-release fertilizers. Polym-Plast Tech Mat 59(9):975–984

    CAS  Google Scholar 

  32. Karadağ E, Saraydin D, Çaldiran Y, Güven O (2000) Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym Adv Technol 11:59–68

    Article  Google Scholar 

  33. Karadağ E, Üzüm ÖB, Saraydin D (2002) Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur Polym J 38:2133–2141

    Article  Google Scholar 

  34. Kim HJ, Koo JM, Kim SH, Hwang SY, Im SS (2017) Synthesis of super absorbent polymer using citric acid as a bio-based monomer. Polym Degrad Stabil 144:128–136

    Article  CAS  Google Scholar 

  35. Kiran TR, Krishnamoorthi S, Kumar K (2019) Synthesis of cross-linker devoid novel hydrogels: Swelling behaviour and controlled urea release studies. J Environ Chem Eng 7:103162. https://doi.org/10.1016/j.jece.2019.103162

    Article  CAS  Google Scholar 

  36. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanism of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361

    Article  CAS  Google Scholar 

  38. Liu J, Yang Y, Gao B, Li YC, Xie J (2019) Bio-based elastic polyurethane for controlled-release urea fertilizer:Fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537

    Article  CAS  Google Scholar 

  39. Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D (2012) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B: Biointerfaces 90:197–203

    Article  CAS  PubMed  Google Scholar 

  40. Luo YL, Wei QB, Xu F, Chen YS, Fan LH, Zhang CH (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118:329–336

    Article  CAS  Google Scholar 

  41. Ma X, Chen J, Yang Y, Su X, Zhang S, Gao B, Li YC (2018) Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics. Chem Eng J 350:1125–1134

    Article  CAS  Google Scholar 

  42. Mohammed WH, Ali WK, Al-Awady MJ (2018) Evaluation of in vitro drug release kinetics and antibacterial activity of vancomycin HCl-loaded nanogel for topical application. J Pharm Sci Res 10(11):2747–2756

    CAS  Google Scholar 

  43. Mohan YM, Sudhakar K, Murthy PSK, Raju KM (2006) Swelling Properties of Chemically Crosslinked Poly(acrylamide-co-maleic acid) Hydrogels. Int J Polym Mater 55:513–536

    Article  CAS  Google Scholar 

  44. Owonubi SJ, Aderibigbe BA, Mukwevho E, Sadiku ER, Ray SS (2018) Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. Int J Ind Chem 9:39–52

    Article  CAS  Google Scholar 

  45. Pamuk Algi M, Okay O (2014) Highly stretchable self-healing poly(N, N dimethylacrylamide) hydrogels. Eur Polym J 59:113–121

    Article  CAS  Google Scholar 

  46. Peppas NA, Franson NM (1983) The swelling interface number as a criterion for prediction of diffusional solute release mechanism in swellable polymers. J Polym Sci: Polym Phys Edition 21:983–997

    CAS  Google Scholar 

  47. Piccin JS, Dotto GL, Pinto LAA (2011) Adsorption isotherms and thermochemical data of Fd&C Red N° 40 binding by chitosan. Braz J Chem Eng 28:295–304

    Article  CAS  Google Scholar 

  48. Salman OA (1989) Polythylene-coated urea. l. Improved storage and handling properties. Ind Eng Chem Res 28:630–632

    Article  CAS  Google Scholar 

  49. Salman OA, Hovakeemian J, Khraishi N (1989) Polyethylene-coated urea. 2. Urea release as affected by coating material, soil type and temperature. Ind Eng Chem Res 28:633–638

    Article  CAS  Google Scholar 

  50. Saraydin D, Karadağ E, Çaldiran Y, Güven O (2001) Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels. Radiat Phys Chem 60:203–210

    Article  CAS  Google Scholar 

  51. Saraydın D, Öztop HN, Karadağ E, Öztop AY, Işıkver Y, Güven O (2002) The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide–maleic acid hydrogel carriers for production of ethyl alcohol. Process Biochem 37:1351–1357

    Article  Google Scholar 

  52. Shen Y, Zhou J, Du C (2019) Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 9:88. https://doi.org/10.3390/coatings9020088

    Article  CAS  Google Scholar 

  53. Smith JD, Harrison HC (1991) Evaluation of polymers for controlled release properties when incorporated with nitrogen fertilizer solutions. Commun Soil Sci Plant Anal 22:559–573

    Article  CAS  Google Scholar 

  54. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim URSS 12:327–356

    Google Scholar 

  55. Tong Z, Yuhai L, Shihuo Y, Zhongyi H (2009) Superabsorbent hydrogels as carriers for the controlled-release of urea: Experiments and a mathematical model describing the release rate. Biosyst Eng 102:44–50

    Article  Google Scholar 

  56. Tyliszczak B, Polaczek J, Pielichowski J, Pielichowski K (2009) Preparation and properties of biodegradable slow-release PAA superabsorbent matrixes for phosphorus fertilizers. Macromol Symp 279:236–242

    Article  CAS  Google Scholar 

  57. Varelas CG, Dixon DG, Steiner C (1995) Zero-order release from biphasic polymer hydrogels. J Control Release 34:185–192

    Article  CAS  Google Scholar 

  58. Zhan F, Liu M, Guo M, Wu L (2004) Preparation of superabsorbent polymer with slow-release phosphate fertilizer. J Appl Polym Sci 92:3417–3421

    Article  CAS  Google Scholar 

  59. Zhang H, Luan Q, Huang Q, Tang H, Huang F, Li W, Wan C, Liu C, Xu J, Guo P, Zhou Q (2017) A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr Polym 157:1830–1836

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Huang R, Peng S, Ma Z (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem. https://doi.org/10.1155/2015/413497

    Article  Google Scholar 

  61. Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J. https://doi.org/10.1016/j.cej.2010.12.082

    Article  Google Scholar 

  62. Xu-sheng H, Zong-wen L, Pei-zha H, Ji-xian D, Ren-shan G, Hong-bo L, Zeng-chao G (2007) Characteristics and performance of novel water-absorbent slow release nitrogen fertilizers. Agr Sci China 6(3):338–346

    Article  Google Scholar 

  63. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554

    Article  CAS  PubMed  Google Scholar 

  64. Wu S, Li H, Chen JP, Lam KY (2004) Modeling investigation of hydrogel volume transition. Macromol Theory Simul 13:13–29

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Ersen Dudu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudu, T.E., Alpaslan, D. & Aktas, N. Development of Urea Uptake and Release Studies Using N, N-Dimethylacrylamide/Maleic Acid/Citric Acid Based Macrogel. J Polym Environ 29, 3636–3648 (2021). https://doi.org/10.1007/s10924-021-02130-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02130-5

Keywords

Navigation