Skip to main content
Log in

Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were calculated by Langmuir model and their values of 25.273 and 114.142 mg/g for cadmium and copper ions respectively. Computer solution (COMSOL) Multiphysics program has utilized to simulate the metal ions transport in the column tests. Model predictions as well as experimental measurements signified that increasing bed depth with decreasing of flow rate and inlet concentration leads to delay in the propagation of metal front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Madoni P, Davoli D, Gorbi G, Vescovi L (1996) Toxic effect of heavy metals on the activated sludge protozoan community. Water Res 30:135–141. https://doi.org/10.1016/0043-1354(95)00124-4

    Article  CAS  Google Scholar 

  2. Gardea-Torresdey JL, Tang L, Salvador JM (1996) Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J Hazard Mater 48:191–206. https://doi.org/10.1016/0304-3894(95)00156-5

    Article  CAS  Google Scholar 

  3. Davis T, Volesky B, Vieira RHS (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278. https://doi.org/10.1016/S0043-1354(00)00177-9

    Article  CAS  Google Scholar 

  4. Yu B, Zhang Y, Shukla A et al (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. J Hazard Mater 80:33–44. https://doi.org/10.1016/S0304-3894(00)00278-8

    Article  CAS  PubMed  Google Scholar 

  5. Faisal AAH, Al-Ridah ZA, Naji LA et al (2020) Waste Foundry Sand as Permeable and Low Permeable Barrier for Restriction of the Propagation of Lead and Nickel Ions in Groundwater. J Chem 2020:1–13. https://doi.org/10.1155/2020/4569176

    Article  CAS  Google Scholar 

  6. Faisal AAH, Sulaymon AH, Khaliefa QM (2018) A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int J Environ Sci Technol 15:1123–1138. https://doi.org/10.1007/s13762-017-1466-0

    Article  CAS  Google Scholar 

  7. Faisal AAH, Hmood ZA (2015) Groundwater protection from cadmium contamination by zeolite permeable reactive barrier. Desalin Water Treat. https://doi.org/10.1080/19443994.2013.855668

    Article  Google Scholar 

  8. Faisal A, Ahmed M (2015) Removal of copper ions from contaminated groundwater using waste foundry sand as permeable reactive barrier. Int J Environ Sci Technol 12:2613–2622. https://doi.org/10.1007/s13762-014-0670-4

    Article  CAS  Google Scholar 

  9. Faisal AAH, Abd Ali ZT (2015) Using granular dead anaerobic sludge as permeable reactive barrier for remediation of groundwater contaminated with phenol. J Environ Eng 141:04014072. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000903

    Article  CAS  Google Scholar 

  10. Sulaymon AH, Faisal AAH, Abd Ali ZT (2015) Performance of granular dead anaerobic sludge as permeable reactive barrier for containment of lead from contaminated groundwater. Desalin Water Treat 56:327–337. https://doi.org/10.1080/19443994.2014.942376

    Article  CAS  Google Scholar 

  11. Faisal AAH, Abbas TR, Jassam SH (2015) Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier. Desalin Water Treat 55:1586–1597. https://doi.org/10.1080/19443994.2014.928908

    Article  CAS  Google Scholar 

  12. Sulaymon AH, Faisal AAH, Khaliefa QM (2015) Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater. J Hazard Mater 297:160–172. https://doi.org/10.1016/j.jhazmat.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  13. Faisal AAH (2016) Effect of pH on the performance of olive pips reactive barrier through the migration of copper-contaminated groundwater. Desalin Water Treat 57:4935–4943. https://doi.org/10.1080/19443994.2014.999132

    Article  CAS  Google Scholar 

  14. Faisal AAH, Nassir ZS, Naji LA et al (2020) A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network. Sustain Chem Pharm 15:100220. https://doi.org/10.1016/j.scp.2020.100220

    Article  Google Scholar 

  15. Faisal AAH, Jasim HK, Naji LA et al (2020) Cement kiln dust-sand permeable reactive barrier for remediation of groundwater contaminated with dissolved benzene. Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1746341

    Article  Google Scholar 

  16. Alquzweeni SS, Faisal AAH (2020) Possibility of using granular iron slag byproduct as permeable reactive barrier for remediation of simulated water contaminated with lead ions. Desalin Water Treat 178:211–219. https://doi.org/10.5004/dwt.2020.24974

    Article  CAS  Google Scholar 

  17. Naushad M (2014) Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108. https://doi.org/10.1016/j.cej.2013.09.013

    Article  CAS  Google Scholar 

  18. Naushad M, Alothman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166. https://doi.org/10.1080/19443994.2013.862744

    Article  CAS  Google Scholar 

  19. Naushad M, Mittal A, Rathore M, Gupta V (2015) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin Water Treat 54:2883–2890. https://doi.org/10.1080/19443994.2014.904823

    Article  CAS  Google Scholar 

  20. Naushad M, Alothman ZA, Awual MR et al (2015) Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics (Kiel) 21:2237–2245. https://doi.org/10.1007/s11581-015-1401-7

    Article  CAS  Google Scholar 

  21. Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155

    Article  CAS  Google Scholar 

  22. Han R, Zou L, Zhao X et al (2009) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem Eng J 149:123–131. https://doi.org/10.1016/j.cej.2008.10.015

    Article  CAS  Google Scholar 

  23. Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  24. He E, Lü C, He J et al (2016) Binding characteristics of Cu2+ to natural humic acid fractions sequentially extracted from the lake sediments. Environ Sci Pollut Res 23:22667–22677

    Article  CAS  Google Scholar 

  25. US EPA (1999) Biosolids Generation , Use , and Disposal in The United States. US EPA Munic Ind Solid Waste Div

  26. Martínez K, Abad E, Palacios O et al (2007) Assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans in sludges according to the European environmental policy. Environ Int 33:1040–1047. https://doi.org/10.1016/j.envint.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  27. Al Juboury MF, Alshammari MH, Al-Juhaisi MR et al (2020) Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye. Water Sci Technol. https://doi.org/10.2166/wst.2020.241

    Article  PubMed  Google Scholar 

  28. Naji LA, Faisal AAH, Rashid HM et al (2020) Environmental remediation of synthetic leachate produced from sanitary landfills using low-cost composite sorbent. Environ Technol Innov 18:100680. https://doi.org/10.1016/j.eti.2020.100680

    Article  Google Scholar 

  29. Zhang S, Wen J, Hu Y et al (2019) Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J Hazard Mater 366:210–218. https://doi.org/10.1016/j.jhazmat.2018.11.103

    Article  CAS  PubMed  Google Scholar 

  30. Abdul-Kareem M, Faisal A (2020) Removal of copper and cadmium ions from contaminated groundwater by iron oxide/hydroxide-coated sand in the permeable reactive barrier technology. Desalin Water Treat 182:208–219

    Article  CAS  Google Scholar 

  31. Faisal AAH, Abdul-Kareem MB, Mohammed AK et al (2020) Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. J Water Process Eng 36:101373. https://doi.org/10.1016/j.jwpe.2020.101373

    Article  Google Scholar 

  32. Faisal AAH, Jasim HK, Naji LA et al (2020) Cement kiln dust-sand permeable reactive barrier for remediation of groundwater contaminated with dissolved benzene. Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1746341

    Article  Google Scholar 

  33. Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33. https://doi.org/10.1023/A:1021304828010

    Article  CAS  Google Scholar 

  34. Gheju M, Miulescu A (2007) Sorption equilibrium of hexavalent chromium on granular activated carbon. Chem Bull Politech Univ 52(66):41–46

    Google Scholar 

  35. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  36. Alshammari M, Al Juboury MF, Naji LA et al (2020) Synthesis of a novel composite sorbent coated with siderite nanoparticles and its application for remediation of water contaminated with Congo Red Dye. Int J Environ Res 14:177–191. https://doi.org/10.1007/s41742-020-00245-6

    Article  CAS  Google Scholar 

  37. Rai MK, Shahi G, Meena V et al (2016) Removal of hexavalent chromium Cr(VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour-Effic Technol 2:S63–S70

    Google Scholar 

  38. Puranik PR, Modak JM, Paknikar KM (1999) A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy 52:189–197. https://doi.org/10.1016/S0304-386X(99)00017-1

    Article  CAS  Google Scholar 

  39. Sharma G, Naushad M (2020) Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. J Mol Liq 310:113025. https://doi.org/10.1016/j.molliq.2020.113025

    Article  CAS  Google Scholar 

  40. Lagergren S (1989) About the theory of so-called adsorption of soluble substances. K Seventeen Hand 24:1–39

    Google Scholar 

  41. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  42. Ahmed DN, Naji LA, Faisal AAH et al (2020) Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-58866-y

    Article  CAS  Google Scholar 

  43. Faisal AAH, Al-Wakel SFA, Assi HA et al (2020) Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101112

    Article  Google Scholar 

  44. Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  45. Mathews AP, Zayas I (1989) Particle size and shape effects on adsorption rate parameters. J Environ Eng 115:41–55

    Article  CAS  Google Scholar 

  46. Faisal AAH, Alquzweeni SS, Naji LA, Naushad M (2020) Predominant mechanisms in the treatment of wastewater due to interaction of benzaldehyde and iron slag byproduct. Int J Environ Res Public Health 17:226. https://doi.org/10.3390/ijerph17010226

    Article  CAS  Google Scholar 

  47. Saad N, Abd Ali ZT, Naji LA et al (2019) Development of Bi-Langmuir model on the sorption of cadmium onto waste foundry sand: effects of initial pH and temperature. Environ Eng Res 25:677–684. https://doi.org/10.4491/eer.2019.277

    Article  Google Scholar 

  48. Naji LA, Jassam SH, Yaseen MJ et al (2019) Modification of Langmuir model for simulating initial pH and temperature effects on sorption process. Sep Sci Technol. https://doi.org/10.1080/01496395.2019.1655055

    Article  Google Scholar 

  49. Faisal AAH, Naji LA (2019) Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network. Assoc Arab Univ J Eng Sci 26:28–34. https://doi.org/10.33261/jaaru.2019.26.1.004

    Article  Google Scholar 

  50. Abd Ali ZT, Naji LA, Almuktar SAAAN et al (2020) Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J Water Process Eng 33:101033. https://doi.org/10.1016/j.jwpe.2019.101033

    Article  Google Scholar 

  51. Faisal AAH, Ali IM, Naji LA et al (2020) Using different materials as permeable reactive barrier for remediation of groundwater contaminated with landfill’s leachate. Desalin Water Treat 175:152–163. https://doi.org/10.5004/dwt.2020.24890

    Article  CAS  Google Scholar 

  52. Ahmed DN, Faisal AAH, Jassam SH et al (2020) Kinetic model for pH variation resulted from interaction of aqueous solution contaminated with nickel ions and cement kiln dust. J Chem 2020:1–11. https://doi.org/10.1155/2020/8732308

    Article  CAS  Google Scholar 

  53. Koesnarpadi S, Santosa SJ, Siswanta D, Rusdiarso B (2015) Synthesis and characterizatation of magnetite nanoparticle coated humic Acid (Fe3O4/HA). Procedia Environ Sci 30:103–108. https://doi.org/10.1016/j.proenv.2015.10.018

    Article  CAS  Google Scholar 

  54. Rao K, Mohapatra M, Anand S, Venkateswarlu P (2011) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2:81–103. https://doi.org/10.4314/ijest.v2i7.63747

    Article  Google Scholar 

  55. Kurnaz SU, Buyukgungor H (2009) Assessment of various biomasses in the removal of phenol from aqueous solutions. J Microbiol Biochem Technol 1:47–50

    CAS  Google Scholar 

  56. Niu H, Zhang D, Zhang S et al (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190:559–565. https://doi.org/10.1016/j.jhazmat.2011.03.086

    Article  CAS  PubMed  Google Scholar 

  57. Prado AGS, Miranda BS, Dias JA (2004) Attachment of two distinct humic acids onto a silica gel surface. Colloids Surf A 242:137–143. https://doi.org/10.1016/j.colsurfa.2004.04.065

    Article  CAS  Google Scholar 

  58. Damena T, Alansi T (2018) Review: low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) and its application for the remediation of phosphate from aqueous media. J EncapsulAdsorpt Sci 08:256–279. https://doi.org/10.4236/jeas.2018.84013

    Article  CAS  Google Scholar 

  59. Pan L, Wang Z, Yang Q, Huang R (2018) Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8:1–15. https://doi.org/10.3390/nano8110957

    Article  CAS  Google Scholar 

  60. Chen Q, Yin D, Zhu S, Hu X (2012) Adsorption of cadmium(II) on humic acid coated titanium dioxide. J Colloid Interface Sci 367:241–248. https://doi.org/10.1016/j.jcis.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  61. Canteli AM, Carpiné D, Scheer A et al (2014) Fixed-bed column adsorption of the coffee aroma compound benzaldehyde from aqueous solution onto granular activated carbon from coconut husk. LWT Food Sci Technol 59:1025–1032

    Article  CAS  Google Scholar 

  62. Ko DCK, Porter JF, McKay G (2000) Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chem Eng Sci 55:5819–5829. https://doi.org/10.1016/S0009-2509(00)00416-4

    Article  CAS  Google Scholar 

  63. Kundu S, Gupta AK (2007) As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies. Chem Eng J 129:123–131

    Article  CAS  Google Scholar 

  64. Faisal AAH, Ibreesam MM, Al-Ansari N et al (2020) COMSOL multiphysics 3.5a package for simulating the cadmium transport in the sand bed-bentonite low permeable barrier. J King Saud Univ Sci 32:1944–1952. https://doi.org/10.1016/j.jksus.2020.01.047

    Article  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge the technical support of Environmental Engineering Department/University of Baghdad, Iraq during this work. The authors would like to gratefully acknowledge the technical support for Laith A. Naji, Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq. One of the authors (A.A. Ghfar) acknowledges financial support from the Distinguished Scientist Fellowship Program (DSFP-2021), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad A. H. Faisal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, A.A.H., Abdul-Kareem, M.B., Mohammed, A.K. et al. Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water. J Polym Environ 29, 3618–3635 (2021). https://doi.org/10.1007/s10924-021-02132-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02132-3

Keywords

Navigation