Skip to main content
Log in

Linear Diamides Derivative-Nucleated Biodegradable Poly(ethylene succinate) Polyester: Crystallization Kinetics and Aggregated Structure Manipulated by Hydrogen Bond Interaction

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A linear diamides derivative (TMC300) as a nucleating agent (NA) was incorporated into biodegradable poly(ethylene succinate) (PES) to investigate effect of TMC300 on nucleation, crystallizability, crystallization kinetics, aggregated structure of PES. TMC300 enhanced significantly crystallizability and crystallization temperature of PES in cooling process at a rate of 10 ℃/min from molten state, indicating that TMC300 exhibits an excellent nucleation effect on PES. IR measurement suggested that TMC300 interacts with amorphous carbonyl and ester segment, and crystalline CH2 segment of PES via hydrogen bond. Change rate of carbonyl group is comparable to that of C‒C backbone of PES, regardless of the presence or absence of TMC300. Small difference of diffraction peak in WAXD measurement between neat PES and PES/TMC300 is probably attributed to spherulitic orientation on film surface of neat PES, and different spatial arrangements in the same crystal lattice. TMC300 enhanced carbon residue yield of PES/TMC300 composite, probably related to slight flame retardance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Papageorgiou GZ, Bikiaris DN (2009) Synthesis and properties of novel biodegradable/biocompatible poly[propyleneco-(ethylene succinate)] random copolyesters. Macromol Chem Phys 210:1408–1421

    Article  CAS  Google Scholar 

  2. Qu D, Zhang F, Gao H, Wang Q, Bai Y, Liu H (2019) Studies on isosorbide-enhanced biodegradable poly(ethylene succinate). Chem Res Chinese U 35:345–352

    Article  CAS  Google Scholar 

  3. Li L, Tang J, Li Y, Yang J, Sun Y, Ma H, Zhou S, Zhang C, Wang X (2020) Multiple amides derivative-nucleated poly(1,4-butylene adipate) polyester: Tailored temperature-dependent polymorphism, crystal morphology and phase transition. Polymer 186:122088

    Article  CAS  Google Scholar 

  4. Li L, Yang L, Tang J, Yang J, Li W, Zhou S, Ma H, Zhu H, Zhu Z (2020) Modulated crystallization behavior of bacterial copolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): effect of a linear multiple amides derivative as a nucleator. J Macromol Sci A 57:439–450

    Article  CAS  Google Scholar 

  5. Yang J, Wang X, Liang R, Kong R, Sun Y, Tang J, Li L, Xue L, Chen Q (2018) Polymorphism, thermal stability and enzymatic degradation of poly(1,4-butylene adipate) tailored by a benzene-1,3,5-tricarboxamide-based nucleating agent. J Mater Sci 53:10569–10581

    Article  CAS  Google Scholar 

  6. Hua L, Chen Q, Yin J, Zhang C, Wang X, Feng X, Yang J (2017) Fabrication and physical properties of poly(ε-caprolactone)/modified graphene nanocomposite. Macromol Mater Eng 302:1600328–1600338

    Article  CAS  Google Scholar 

  7. Yang J, Cao X, Zhao Y, Wang L, Liu B, Jia J, Liang H, Chen M (2017) Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: Effect of modified magnesium oxide nanoparticles. J Biomater Sci Polym E 28:488–503

    Google Scholar 

  8. Liang R, Chen Y, Zhang C, Yin J, Liu X, Wang L, Kong R, Feng X, Yang J (2017) Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: zinc phenylphosphonate. Chin J Polym Sci 35:558–568

    Article  CAS  Google Scholar 

  9. Qiu S, Zhang K, Su Z, Qiu Z (2018) Thermal behavior, mechanical and rheological properties, and hydrolytic degradation of novel branched biodegradable poly(ethylene succinate) copolymers. Polym Test 66:64–69

    Article  CAS  Google Scholar 

  10. Zhang K, Qiu Z (2019) Miscibility and crystallization behavior of novel branched poly(ethylene succinate)/poly(vinyl phenol) blends. Chin J Polym Sci 37:1169–1175

    Article  CAS  Google Scholar 

  11. Ishii N, Inoue Y, Shimada K, Tezuka Y, Mitomo H, Kasuya K (2007) Fungal degradation of poly(ethylene succinate). Polym Degrad Stab 94:44–52

    Article  CAS  Google Scholar 

  12. Ichikawa Y, Washiyama J, Moteki Y, Noguchi K (1995) Crystal modification in poly(ethylene succinate). Polymer 27:1264–1266

    Article  CAS  Google Scholar 

  13. Tezuka Y, Ishii N, Kasuya K, Mitomo H (2004) Degradation of poly(ethylene succinate) by mesophilic bacteria. Polym Degrad Stab 84:115–121

    Article  CAS  Google Scholar 

  14. Ueda A, Chatani Y, Tadokoro H (1971) Structure studies of polyesters. IV. molecular and structure of poly(ethylene succinate) and poly(ethylene oxalate). Polym J 2:387–397

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46:12081–12092

    Article  CAS  Google Scholar 

  16. Zhao J, Wang X, Zhou W, Zhi E, Zhang W, Ji J (2013) Graphene-reinforced biodegradable poly(ethylene succinate) nanocomposites prepared by in situ polymerization. J Appl Polym Sci 130:3212–3220

    Article  CAS  Google Scholar 

  17. Ray SS, Makhatha ME (2009) Thermal properties of poly(ethylene succinate) nanocomposite. Polymer 50:4635–4643

    Article  CAS  Google Scholar 

  18. Bandyopadhyay J, Ray SS, Scriba M, Malwela T (2012) The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite. Polymer 53:3602–3612

    Article  CAS  Google Scholar 

  19. Papageorgiou GZ, Terzopoulou Z, Achilias DS, Bikiaris DN, Kapnisti M, Gournis D (2013) Biodegradable poly(ethylene succinate) nanocomposites. Effect of filler type on thermal behaviour and crystallization kinetics. Polymer 54:4604–4616

    Article  CAS  Google Scholar 

  20. Asadinezhad A, Khonakdar HA, Häuβler L, Wagenknecht U, Heinrich G (2014) Crystallization and melting behavior of poly (ethylene succinate) in presence of graphene nanoplatelets. Thermochim Acta 586:17–24

    Article  CAS  Google Scholar 

  21. Papageorgiou GZ, Terzopoulou Z, Tsanaktsis V, Achilias DS, Triantafyllidis K, Diamanti EK, Gournis D, Bikiaris DN (2015) Effect of graphene oxide and its modification on the microstructure, thermal properties and enzymatic hydrolysis of poly(ethylene succinate) nanocomposites. Thermochim Acta 614:116–128

    Article  CAS  Google Scholar 

  22. Zhu S, Zhao Y, Qiu Z (2011) Crystallization kinetics and morphology studies of biodegradable poly(ethylene succinate)/multi-walled carbon nanotubes nanocomposites. Thermochim Acta 517:74–80

    Article  CAS  Google Scholar 

  23. Teng S, Qiu Z (2017) Enhanced crystallization and mechanical properties of biodegradablepoly(ethylene succinate) by octaisobutyl-polyhedral oligomericsilsesquioxanes in their nanocomposites. Thermochim Acta 649:22–30

    Article  CAS  Google Scholar 

  24. Tang L, Qiu Z (2016) Effect of poly(ethylene glycol)-polyhedral oligomeric silsesquioxanes on the crystallization kinetics and morphology of biodegradable poly(ethylene succinate). Polym Degrad Stab 134:97–104

    Article  CAS  Google Scholar 

  25. Asadinezhad A, Khonakdar HA, Scheffler C, Wagenknecht U, Heinrich G (2013) Poly(ethylene succinate)/single-walled carbon nanotube composites: a study on crystallization. Polym Bull 70:3463–3474

    Article  CAS  Google Scholar 

  26. Asadi V, Jafari SH, Khonakdar HA, Häuβler L, Wagenknecht U (2016) Incorporation of inorganic fullerene-like WS2 into poly(ethylene succinate) to prepare novel biodegradable nanocomposites: a study on isothermal and dynamic crystallization. RSC Adv 6:4925–4935

    Article  CAS  Google Scholar 

  27. Jing X, Qiu Z (2014) Influence of thermally reduced graphene low-loadings on the crystallization behavior and morphology of biodegradable poly(ethylene succinate). Ind Eng Chem Res 53:498–504

    Article  CAS  Google Scholar 

  28. Clarke A, Vasileiou AA, Kontopoulou M (2019) Crystalline nanocellulose/thermoplastic polyester composites prepared by in situ polymerization. Polym Eng Sci 59:989–995

    Article  CAS  Google Scholar 

  29. Li J, Jiang Z, Qiu Z (2021) Thermal and rheological properties of fully biodegradable poly(ethylene succinate)/cellulose nanocrystals composites. Compos Commun 23:100571

    Article  Google Scholar 

  30. Wei Z, Zhou S, Xie Y, Sun Y, Ma H, Xie Z, Zhu Z, Yang J (2021) Dual effects of a diamide derivative as nucleator on crystallization kinetics and aggregated structure of biodegradable poly(ethylene succinate). Polym Test 94:107022

    Article  CAS  Google Scholar 

  31. Zhou S, Wei Z, Sun Y, Zhu Z, Xie Z, Ma H, Yin J, Wang J, Yang J (2021) Biocompatible linear diamides derivative-nucleated biodegradable poly(ethylene succinate): Tailored crystallization kinetics, aggregated structure and thermal degradation Polym Degrad Stabil 183:109428

  32. József V, Alfréd M (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431

    Article  CAS  Google Scholar 

  33. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  34. Chen Y, Zhong G, Wang Y, Li Z, Li L (2009) Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 42:4343–4348

    Article  CAS  Google Scholar 

  35. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2006) Nucleating agent for poly(L-lactic acid)–an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203

    Article  CAS  Google Scholar 

  36. Xie Q, Han L, Shan G, Bao Y, Pan P (2016) Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain Chem Eng 4:2680–2688

    Article  CAS  Google Scholar 

  37. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Physical and mechanical properties of poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci 103:244–250

    Article  CAS  Google Scholar 

  38. Xu T, Zhang A, Zhao Y, Han Z, Xue L (2015) Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym Test 45:101–106

    Article  CAS  Google Scholar 

  39. Ma P, Xu Y, Shen T, Dong W, Chen M, Lemstra PJ (2015) Tailoring the crystallization behavior of poly(L-lactide) with self-sssembly-type oxalamide compounds as nucleators: 1. Effect of terminal configuration of the nucleators. Eur Polym J 70:400–411

    Article  CAS  Google Scholar 

  40. Ma P, Xu Y, Wang D, Dong W, Chen M (2014) Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind Eng Chem Res 53:12888–12892

    Article  CAS  Google Scholar 

  41. Xiong Z, Zhang X, Wang R, de Vos S, Wang R, Joziasse CAP, Wang D (2015) Favorable formation of stereocomplex crystals in poly(L-lactide)/poly(D-lactide) blends by selective nucleation. Polymer 76:98–104

    Article  CAS  Google Scholar 

  42. Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly (L-lactide) by adding nucleating agent. Macromolecules 44:1233–1237

    Article  CAS  Google Scholar 

  43. Xing Q, Li R, Dong X, Luo F, Kuang X, Wang D, Zhang L (2015) Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol Chem Phys 216:1134–1145

    Article  CAS  Google Scholar 

  44. Fan Y, Zhu J, Yan S, Chen X, Yin J (2015) Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(L-lactic acid). Polymer 67:63–71

    Article  CAS  Google Scholar 

  45. Bai H, Huang C, Xiu H, Zhang Q, Deng H, Wang K, Chen F, Fu Q (2014) Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromol 15:1507–1514

    Article  CAS  Google Scholar 

  46. Kong R, Jia Y, Yang J, Wang X, Sun Y, Lian J, Chen J, Kuang Y, Li Y, Huang M (2019) Polymorphism and properties of biodegradable poly(1,4-butylene adipate) tailored by an aliphatic diamide derivative. Polym Int 68:351–359

    Article  CAS  Google Scholar 

  47. Yang J, Liang R, Kong R, Chen Y, Wang X, Yin J, Wan J, Wang X, Bi C (2017) Crystal morphology, crystallization behavior, polymorphic crystalline structure and thermal stability of poly(1,4-butylene adipate) modulated by a oxalamide derivative nucleating agent. Polym Degrad Stab 144:33–42

    Article  CAS  Google Scholar 

  48. Yang J, Liang R, Chen Y, Zhang C, Zhang R, Wang X, Kong R, Chen Q (2017) Using a Self-assemblable nucleating agent to tailor crystallization behavior, crystal morphology, polymorphic crystalline structure and biodegradability of poly(1,4-butylene adipate). Ind Eng Chem Res 56:7910–7919

    Article  CAS  Google Scholar 

  49. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II Experimental evidence J Non-Cryst Solids 162:13–25

    Article  CAS  Google Scholar 

  50. Vasileiou AA, Papageorgiou GZ, Kontopoulou M, Docoslis A, Bikiaris D (2013) Covalently bonded poly(ethylene succinate)/SiO2 nanocomposites prepared by in situ polymerization. Polymer 54:1018–1032

    Article  CAS  Google Scholar 

  51. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Polym Phys 31:1383–1393

    Article  CAS  Google Scholar 

  52. Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Polym Phys 31:1395–1405

    Article  CAS  Google Scholar 

  53. Trujillo M, Arnal ML, Müller AJ, Laredo E, St B, Bonduel D, Dubois Ph (2007) Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules 40:6268–6276

    Article  CAS  Google Scholar 

  54. Müller AJ, Arnal ML, Trujillo M, Lorenzo AT (2011) Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, miktoarm star copolymers and nanocomposites. Eur Polym J 47:614–629

    Article  CAS  Google Scholar 

  55. Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T, Ozaki Y (2011) Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly(3-hydroxybutyrate) and cellulose acetate butyrate studied by DSC, FT-IR, and WAXD. Polymer 52:461–471

    Article  CAS  Google Scholar 

  56. Khasanah RKR, Sato H, Takahashi I, Ozaki Y (2015) Intermolecular hydrogen bondings in the poly(3-hydroxybutyrate) and chitin blends: Their effects on the crystallization behavior and crystal structure of poly(3-hydroxybutyrate). Polymer 75:141–150

    Article  CAS  Google Scholar 

  57. Marlina D, Hoshina H, Ozaki Y, Sato H (2019) Crystallization and crystalline dynamics of poly(3-hydroxybutyrate)/poly(4-vinylphenol) polymer blends studied by low-frequency vibrational spectroscopy. Polymer 181:121790

    Article  CAS  Google Scholar 

  58. Rastogi VK, Singh C, Jain V, Palafox MA (2000) FTIR and FT-Raman spectra of 5-methyluracil (thymine). J Raman Spectrosc 31:1005–1012

    Article  CAS  Google Scholar 

  59. Legras R, Mercie JP, Nield E (1983) Polymer crystallization by chemical nucleation. Nature 304:432–434

    Article  CAS  Google Scholar 

  60. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M (2007) Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer 48:401–408

    Article  CAS  Google Scholar 

  61. Trujillo M, Arnal ML, Müller AJ, Mujica MA, de Navarro CU, Ruelle B, Dubois P (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ɛ-caprolactone). Polymer 53:832–841

    Article  CAS  Google Scholar 

  62. Yang J, Li Z, Pan P, Zhu B, Dong T, Inoue Y (2009) Temperature-dependent polymorphic crystalline structure and melting behavior of poly(butylene adipate) investigated by time-resolved FTIR spectroscopy. J Polym Sci Part B 47:1997–2007

    Article  CAS  Google Scholar 

  63. Zhang J, Sato H, Noda I, Ozaki Y (2005) Conformation rearrangement and molecular dynamics of poly(3-hydroxybutyrate) during the melt-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 38:4274–4281

    Article  CAS  Google Scholar 

  64. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): Molecular weight dependence. Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  65. Zhu B, He Y, Asakawa N, Yoshie N, Nishida N, Iuoue Y (2005) Polymorphic crystallization and melting–recrystallization behavior of poly(3-hydroxypropionate). Macromolecules 38:6455–6465

    Article  CAS  Google Scholar 

  66. Pan P, Liang Z, Nakamura N, Miyagawa T, Inoue Y (2009) Uracil as nucleating agent for bacterial poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] copolymers. Macromol Biosci 9:585–595

    Article  CAS  PubMed  Google Scholar 

  67. Gazzano M, Tomasi G, Scandola M (1997) X-ray investigation on melt-crystallized bacterial poly(3-hydroxybutyrate). Macromol Chem Phys 198:71–80

    Article  CAS  Google Scholar 

  68. Yang J, Pan P, Dong T, Inoue Y (2010) Crystallization kinetics and crystalline structure of biodegradable poly(ethylene adipate). Polymer 51:807–815

    Article  CAS  Google Scholar 

  69. Jiang N, Zhao L, Gan Z (2010) Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals. Polym Degrad Stab 95:1045–1053

    Article  CAS  Google Scholar 

  70. Chen Y, Wang S, Chen Q, Xi Z, Wang C, Chen X, Feng X, Liang R, Yang J (2015) Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate. Eur Polym J 72:222–237

    Article  CAS  Google Scholar 

  71. Tang Y, Xu J, Guo B (2015) Polymorphic behavior and enzymatic degradation of poly(butylene adipate) in the presence of hexagonal boron nitride nanosheets. Ind Eng Chem Res 54:1832–1841

    Article  CAS  Google Scholar 

  72. Shen D, Xu Y, Long J, Shi X, Chen L, Wang Y (2017) Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. J Anal Appl Pyrol 128:54–63

    Article  CAS  Google Scholar 

  73. Qiu S, Xing W, Feng X, Yu B, Mu X, Yuen RKK, Hu Y (2017) Self-standing cuprous oxide nanoparticles on silica@polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem Eng J 309:802–814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Natural Science Foundation of Tianjin City (20JCYBJC00580)”, “Program for Prominent Young College Teachers of Tianjin Educational Committee”, “Open Fund of Key Laboratory of Original Agro-Environmental Pollution Prevention and Control (18nybcdhj-4)” and “Training Program for Innovative Research Team in Tianjin Institutions of Higher Education (TD13-5021)”.

Author information

Authors and Affiliations

Authors

Contributions

The main experiments were conducted and this article was written by SZ. Data collection and processing were performed by YS, HM, CJ, XS and YY. Both JY and JL contributed to the design of the experiments, analysis of the data and revision of the manuscript.

Corresponding authors

Correspondence to Juan Liu or Jinjun Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Sun, Y., Ma, H. et al. Linear Diamides Derivative-Nucleated Biodegradable Poly(ethylene succinate) Polyester: Crystallization Kinetics and Aggregated Structure Manipulated by Hydrogen Bond Interaction. J Polym Environ 29, 3605–3617 (2021). https://doi.org/10.1007/s10924-021-02141-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02141-2

Keywords

Navigation