• Open Access

Numerical study of suspensions of nucleated capsules at finite inertia

Arash Alizad Banaei, Armin Shahmardi, and Luca Brandt
Phys. Rev. Fluids 6, 044301 – Published 6 April 2021

Abstract

We study the rheology of suspensions of capsules with a rigid nucleus at negligible and finite flow inertia by means of numerical simulations. The capsule membrane is modeled as a thin Neo-Hookean hyperelastic material and the nucleus as a rigid particle with radius equal to half the radius of the undeformed spherical capsules. The fluid and solid motion are coupled with an immersed boundary method, validated for both the deformable membrane and the rigid nucleus. We examine the effect of the Reynolds number, capillary number, and volume fraction on the macroscopic properties of the suspensions, comparing with the case of capsules without nuclei. To explain the rheological measurables, we examine the mean capsule deformation, the mean orientation with respect to the flow direction, and the stress budget. The results indicate that the relative viscosity decreases with the capillary number, i.e., increasing deformability, and increases with inertia. The presence of a nucleus always reduces the membrane deformation. Capsules align more in the flow direction at higher capillary numbers and at higher volume fractions, where we also see a significant portion of them oriented with their longer deformed axis in the spanwise direction. When increasing inertia, the alignment with the flow decreases while more capsules orient in the spanwise direction. The first normal stress difference increases with the capillary number and it is always less for the nucleated capsules. Finally, the relative viscosity and the first normal stress difference increase with the capsule volume fraction, an effect more pronounced for the first normal stress difference.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 13 May 2019
  • Accepted 15 March 2021

DOI:https://doi.org/10.1103/PhysRevFluids.6.044301

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Arash Alizad Banaei, Armin Shahmardi, and Luca Brandt

  • Linné Flow Centre and SeRC (Swedish e-Science Research Centre), Department of Engineering Mechanics, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 4 — April 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×