Skip to main content
Log in

Solution of option pricing equations using orthogonal polynomial expansion

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abramowitz, I. A. Stegun (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. U. S. Department of Commerce, Washington, 1964.

    MATH  Google Scholar 

  2. D. Ackerer, D. Filipović: Option pricing with orthogonal polynomial expansions. Math. Finance 30 (2020), 47–84.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Alziary, P. Takáč: Analytic solutions and complete markets for the Heston model with stochastic volatility. Electron. J. Differ. Equ. 2018 (2018), Article ID 168, 54 pages.

  4. B. Alziary, P. Takáč: The Heston stochastic volatility model has a boundary trace at zero volatility. Available at https://arxiv.org/abs/2004.00444 (2020), 48 pages.

  5. J. P. Aubin: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 599–637.

    MATH  Google Scholar 

  6. D. S. Bates: Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 9 (1996), 69–107.

    Article  Google Scholar 

  7. F. Baustian, M. Mrázek, J. Pospíšil, T. Sobotka: Unifying pricing formula for several stochastic volatility models with jumps. Appl. Stoch. Models Bus. Ind. 33 (2017), 422–442.

    MathSciNet  MATH  Google Scholar 

  8. G. Birkhoff, M. H. Schultz, R. S. Varga: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968), 232–256.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Black, M. Scholes: The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973), 637–654.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. H. Bramble, A. H. Schatz, V. Thomée, L. B. Wahlbin: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14 (1977), 218–241.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. H. Bramble, V. Thomée: Discrete time Galerkin methods for a parabolic boundary value problem. Ann. Mat. Pura Appl., IV. Ser. 101 (1974), 115–152.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. J. Corrado, T. Su: Skewness and kurtosis in S&P 500 index returns implied by option prices. J. Financ. Research 19 (1996), 175–192.

    Article  Google Scholar 

  13. J. C. Cox, J. E. Ingersoll, Jr., S. A. Ross: A theory of the term structure of interest rates. Econometrica 53 (1985), 385–407.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Daněk, J. Pospíšil: Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models. Int. J. Comput. Math. 97 (2020), 1268–1292.

    Article  MathSciNet  Google Scholar 

  15. M. Davis, J. Obłój: Market completion using options. Advances in Mathematics of Finance. Banach Center Publications 83. Polish Academy of Sciences, Warsaw, 2008, pp. 49–60.

    Chapter  Google Scholar 

  16. J. Douglas, Jr., T. Dupont: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970), 575–626.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Dupont: Some L2 error estimates for parabolic Galerkin methods. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, New York, 1972, pp. 491–504.

    MATH  Google Scholar 

  18. L. C. Evans: Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, 2010.

    MATH  Google Scholar 

  19. K. Filipová: Solution of Option Pricing Equations Using Orthogonal Polynomial Expansion: Master’s Thesis. University of West Bohemia, Plzen, 2019.

    Google Scholar 

  20. G. Fix, N. Nassif: On finite element approximations to time-dependent problems. Numer. Math. 19 (1972), 127–135.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.-P. Fouque, G. Papanicolaou, K. R. Sircar: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  22. D. Funaro: Polynomial Approximation of Differential Equations. Lecture Notes in Physics: Monographs 8. Springer, Berlin, 1992.

    MATH  Google Scholar 

  23. W. Gautschi: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2004.

    Book  MATH  Google Scholar 

  24. S. L. Heston: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6 (1993), 327–343.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. L. Heston, A. G. Rossi: A spanning series approach to options. Review Asset Pricing Studies 7 (2017), 2–42.

    Google Scholar 

  26. J. C. Hull: Options, Futures, and Other Derivatives. Pearson, New York, 2018.

    MATH  Google Scholar 

  27. J. C. Hull, A. D. White: The pricing of options on assets with stochastic volatilities. J. Finance 42 (1987), 281–300.

    Article  MATH  Google Scholar 

  28. R. Jarrow, A. Rudd: Approximate option valuation for arbitrary stochastic processes. J. Financ. Econ. 10 (1982), 347–369.

    Article  Google Scholar 

  29. O. Kallenberg: Foundations of Modern Probability. Probability and Its Applications. Springer, New York, 2002.

    Book  MATH  Google Scholar 

  30. I. Karatzas, S. E. Shreve: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113. Springer, New York, 1991.

    MATH  Google Scholar 

  31. A. Kufner: Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 83. B. G. Teubner, Leipzig, 1980.

    MATH  Google Scholar 

  32. A. Kufner, A.-M. Sändig: Some Applications of Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 100. B. G. Teubner, Leipzig, 1987.

    MATH  Google Scholar 

  33. N. N. Lebedev: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs, 1965.

    Book  MATH  Google Scholar 

  34. A. L. Lewis: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach, 2000.

    MATH  Google Scholar 

  35. A. L. Lewis: Option Valuation Under Stochastic Volatility II: With Mathematica Code. Finance Press, Newport Beach, 2016.

    MATH  Google Scholar 

  36. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

  37. J. Pospíšil, V. Švígler: Isogeometric analysis in option pricing. Int. J. Comput. Math. 96 (2019), 2177–2200.

    Article  MathSciNet  Google Scholar 

  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2007.

    MATH  Google Scholar 

  39. M. Reed, B. Simon: Methods of Modern Mathematical Physics. I: Functional Analysis. Academic Press, New York, 1980.

    MATH  Google Scholar 

  40. F. D. Rouah: The Heston Model and Its Extensions in Matlab and C#. Wiley Finance Series. John Wiley & Sons, Hoboken, 2013.

    Book  MATH  Google Scholar 

  41. E. M. Stein, J. C. Stein: Stock price distributions with stochastic volatility: An analytic approach. Rev. Financ. Stud. 4 (1991), 727–752.

    Article  MATH  Google Scholar 

  42. B. Swartz, B. Wendroff: Generalized finite-difference schemes. Math. Comput. 23 (1969), 37–49.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Szegö: Orthogonal Polynomials. Colloquium Publications 23. American Mathematical Society, Providence, 1975.

    MATH  Google Scholar 

  44. S. Thangavelu: Lectures on Hermite and Laguerre expansions. Mathematical Notes 42. Princeton University Press, Princeton, 1993.

    Book  MATH  Google Scholar 

  45. V. Thomée: Some error estimates in Galerkin methods for parabolic equations. Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics 606. Springer, Berlin, 1977, pp. 343–352.

    Book  Google Scholar 

  46. V. Thomée: Galerkin-finite element methods for parabolic equations. Proceedings of the International Congress of Mathematicians. Vol. 2. Academia Scientiarum Fennica, Helsinki, 1980, pp. 943–952.

    MATH  Google Scholar 

  47. V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25. Springer, Berlin, 2006.

    MATH  Google Scholar 

  48. L. von Sydow: BENCHOP — the BENCHmarking project in option pricing. Int. J. Comput. Math. 92 (2015), 2361–2379.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. F. Wheeler: A priori L2 estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.

    Article  MathSciNet  Google Scholar 

  50. P. Wilmott: Derivatives: The Theory and Practice of Financial Engineering. John Wiley & Sons, Chichester, 1998.

    Google Scholar 

  51. D. Xiu: Hermite polynomial based expansion of European option prices. J. Econom. 179 (2014), 158–177.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is based on the Master’s thesis Filipová [19] titled Solution of option pricing equations using orthogonal polynomial expansion that was written by Kateřina Filipová and supervised by Jan Pospíšil. The thesis was also advised by Falko Baustian during the two months internship of Kateřina Filipová at the University of Rostock.

Our sincere gratitude goes to Prof. Peter Takáč from the University of Rostock, who introduced us to the problem and provided us with valuable suggestions and insightful criticism, and to both anonymous referees for their valuable comments and extensive suggestions.

Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pospíšil.

Additional information

The work was partially supported by the Czech Science Foundation (GACR) grant no. GA18-16680S “Rough models of fractional stochastic volatility”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baustian, F., Filipová, K. & Pospíšil, J. Solution of option pricing equations using orthogonal polynomial expansion. Appl Math 66, 553–582 (2021). https://doi.org/10.21136/AM.2021.0361-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0361-19

Keywords

MSC 2020

Navigation