Skip to main content
Log in

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D ⊂ ℝd and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by \({\cal P}\). We associate to Problem \({\cal P}\) an optimal control problem, denoted by \({\cal Q}\). Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex \(\tilde K\), we provide results concerning the well-posedness of problems \({\cal P}\) and \({\cal Q}\). Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem \({\cal P}\), constructed with particular choices of G and \(\tilde K\). We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Baiocchi, A. Capelo: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. A Wiley-Interscience Publication. John Wiley, Chichester, 1984.

    MATH  Google Scholar 

  2. V. Barbu: Optimal Control of Variational Inequalities. Research Notes in Mathematics 100. Pitman, Boston, 1984.

    MATH  Google Scholar 

  3. M. Boukrouche, D. A. Tarzia: Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind. Nonlinear Anal., Real World Appl. 12 (2011), 2211–2224.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Boukrouche, D. A. Tarzia: Convergence of distributed optimal control problems governed by elliptic variational inequalities. Comput. Optim. Appl. 53 (2012), 375–393.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Capatina: Variational Inequalities and Frictional Contact Problems. Advances in Mechanics and Mathematics 31. Springer, Cham, 2014.

    MATH  Google Scholar 

  6. M. M. Čoban, P. S. Kenderov, J. P. Revalski: Generic well-posedness of optimization problems in topological spaces. Mathematika 36 (1989), 301–324.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. L. Dontchev, T. Zolezzi: Well-Posed Optimization Problems. Lecture Notes in Mathematics 1543. Springer, Berlin, 1993.

    MATH  Google Scholar 

  8. A. Friedman: Optimal control for variational inequalities. SIAM J. Control Optim. 24 (1986), 439–451.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Glowinski: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York, 1984.

    Book  MATH  Google Scholar 

  10. D. Goeleven, D. Mentagui: Well-posed hemivariational inequalities. Numer. Funct. Anal. Optim. 16 (1995), 909–921.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Han, B. D. Reddy: Plasticity: Mathematical Theory and Numerical Analysis. Interdisciplinary Applied Mathematics 9. Springer, New York, 2013.

    MATH  Google Scholar 

  12. W. Han, M. Sofonea: Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numerica 28 (2019), 175–286.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Haslinger, M. Miettinen, P. D. Panagiotopoulos: Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Nonconvex Optimization and Its Applications 35. Kluwer Academic Publishers, Dordrecht, 1999.

    MATH  Google Scholar 

  14. I. Hlaváček, J. Haslinger, J. Nečas, J. Louíšek: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66. Springer, New York, 1988.

    MATH  Google Scholar 

  15. X. X. Huang: Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res. 53 (2001), 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. X. X. Huang, X. Q. Yang: Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 17 (2006), 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Kikuchi, J. T. Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics 8. SIAM, Philadelphia, 1988.

    Book  MATH  Google Scholar 

  18. D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics 31. SIAM, Philadelphia, 2000.

    Book  MATH  Google Scholar 

  19. J.-L. Lions: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris, 1968. (In French.)

    MATH  Google Scholar 

  20. R. Lucchetti: Convexity and Well-Posed Problems. CMS Books in Mathehmatics 22. Springer, New York, 2006.

    Book  MATH  Google Scholar 

  21. R. Lucchetti, F. Patrone: A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3 (1981), 461–476.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Lucchetti, F. Patrone: Some properties of “well-posed” variational inequalities governed by linear operators. Numer. Funct. Anal. Optim. 5 (1983), 349–361.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Matei, S. Micu: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1641–1652.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Matei, S. Micu, C. Niţă: Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type. Math. Mech. Solids 23 (2018), 308–328.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Mignot: Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976), 130–185. (In French.)

    Article  MATH  Google Scholar 

  26. F. Mignot, J.-P. Puel: Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984), 466–476.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Migórski, A. Ochal, M. Sofonea: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. Springer, New York, 2013.

    MATH  Google Scholar 

  28. Z. Naniewicz, P. D. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications. Pure and Applied Mathematics, Marcel Dekker 188. Marcel Dekker, New York, 1994.

    MATH  Google Scholar 

  29. P. Neitaanmäki, J. Sprekels, D. Tiba: Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer, New York, 2006.

    Google Scholar 

  30. P. D. Panagiotopoulos: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions. Birkhäuser, Boston, 1985.

    Book  MATH  Google Scholar 

  31. P. D. Panagiotopoulos: Hemivariational Inequalities: Applications in Mechanics and Engineering. Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  32. Z. Peng: Optimal obstacle control problems involving nonsmooth functionals and quasilinear variational inequalities. SIAM J. Control Optim. 58 (2020), 2236–2255.

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Peng, K. Kunisch: Optimal control of elliptic variational-hemivariational inequalities. J. Optim. Theory Appl. 178 (2018), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Sofonea: Optimal control of a class of variational-hemivariational inequalities in reflexive Banach spaces. Appl. Math. Optim. 79 (2019), 621–646.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Sofonea: Optimal control of quasivariational inequalities with applications to contact mechanics. Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham, 2019, pp. 445–489.

    Chapter  Google Scholar 

  36. M. Sofonea, J. Bollati, D. A. Tarzia: Optimal control of differential quasivariational inequalities with applications in contact mechanics. J. Math. Anal. Appl. 493 (2021), Article ID 124567, 23 pages.

  37. M. Sofonea, S. Migórski: Variational-Hemivariational Inequalities with Applications. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, 2018.

    MATH  Google Scholar 

  38. M. Sofonea, D. A. Tarzia: Convergence results for optimal control problems governed by elliptic quasivariational inequalities. Numer. Func. Anal. Optim. 41 (2020), 1326–1351.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Sofonea, D. A. Tarzia: On the Tykhonov well-posedness of an antiplane shear problem. Mediterr. J. Math. 17 (2020), Article ID 150, 21 pages.

  40. M. Sofonea, Y.-B. Xiao: On the well-posedness concept in the sense of Tykhonov. J. Optim. Theory Appl. 183 (2019), 139–157.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Sofonea, Y.-B. Xiao: Tykhonov well-posedness of elliptic variational-hemivariational inequalities. Electron. J. Differ. Equ. 2019 (2019), Article ID 64, 19 pages.

  42. A. N. Tikhonov: On the stability of functional optimization problems. U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28–33

    Article  Google Scholar 

  43. Y.-B. Xiao, N.-J. Huang, M.-M. Wong: Well-posedness of hemivariational inequalities and inclusion problems. Taiwanese J. Math. 15 (2011), 1261–1276.

    Article  MathSciNet  MATH  Google Scholar 

  44. Y.-B. Xiao, M. Sofonea: Generalized penalty method for elliptic variational-hemivariational inequalities. To appear in Appl. Math. Optim.

  45. T. Zolezzi: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91 (1996), 257–266.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Sofonea.

Additional information

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 823731 CONMECH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofonea, M., Tarzia, D.A. Tykhonov well-posedness of a heat transfer problem with unilateral constraints. Appl Math 67, 167–197 (2022). https://doi.org/10.21136/AM.2021.0172-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0172-20

Keywords

MSC 2020

Navigation