Skip to main content
Log in

On a Deformed Version of the Two-Disk Dynamo System

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping \({\cal E}{\cal C}\) associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of EC is a convex proper subset of ℝ2. In order to point out new connections, we choose deformation functions such that \({\mathop{\rm Im}\nolimits} \left({{\cal E}{\cal C}} \right) = {\mathbb{R}^2}\). Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Adams, R. Biggs, W. Holderbaum, C. C. Remsing: On the stability and integration of Hamilton-Poisson systems on \(\mathfrak{s}\mathfrak{o}(3)_ - ^*\). Rend. Mat. Appl., VII. Ser. 37 (2016), 1–42.

    MathSciNet  MATH  Google Scholar 

  2. V. I. Arnol’d: Conditions for nonlinear stability of stationary plane curvilinear flows on an ideal fluid. Sov. Math., Dokl. 6 (1965), 773–777; translation from Dokl. Akad. Nauk SSSR 162 (1965), 975–978.

    MATH  Google Scholar 

  3. M. A. Austin, P. S. Krishnaprasad, L.-S. Wang: Almost Poisson integration of rigid body systems. J. Comprit. Pliys. 107 (1993), 105–117.

    MathSciNet  MATH  Google Scholar 

  4. Á. Ballesteros, A. Blasco, F. Musso: Integrable deformations of Rössler and Lorenz systems from Poisson-Lie groups. J. Differ. Equations 260 (2016), 8207–8228.

    Article  Google Scholar 

  5. D. I. Barrett, R. Biggs, C. C. Remsing: Quadratic Hamilton-Poisson systems on \(\mathfrak{s}\mathfrak{e}{(1,1)^*}\): The inhomogeneous case. Acta Appl. Math. 154 (2018), 189–230.

    Article  MathSciNet  Google Scholar 

  6. T. Bînzar, C. Lăzureanu: A Rikitake type system with one control. Discrete Contin. Dyn. Syst, Ser. B. 18 (2013), 1755–1776.

    MathSciNet  MATH  Google Scholar 

  7. T. Bînzar, C. Lăzureanu: On some dynamical and geometrical properties of the Maxwell-Bloch equations with a quadratic control. J. Geom. Phys. 70 (2013), 1–8.

    Article  MathSciNet  Google Scholar 

  8. A. V. Bolsinov, A. V. Borisov: Compatible Poisson brackets on Lie algebras. Math. Notes 72 (2002), 10–30; translation from Mat. Zametki 72 (2002), 11–34.

    Article  MathSciNet  Google Scholar 

  9. D. R. J. Chillingworth, P. J. Holmes: Dynamical systems and models for reversals of the earth’s magnetic field. J. Internat. Assoc. Math. Geol. 12 (1980), 41–59.

    Article  MathSciNet  Google Scholar 

  10. A. E. Cook, P. H. Roberts: The Rikitake two-disc dynamo system. Proc. Camb. Philos. Soc. 68 (1970), 547–569.

    Article  Google Scholar 

  11. P. A. M. Dirac: The Principles of Quantum Mechanics. Oxford University Press, Oxford, 1947.

    MATH  Google Scholar 

  12. C. A. Evripidou, P. Kassotakis, P. Vanhaecke: Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems. Regul. Chaotic Dyn. 22 (2017), 721–739.

    Article  MathSciNet  Google Scholar 

  13. A. Galajinsky: Remark on integrable deformations of the Euler top. J. Math. Anal. Appl. 416 (2014), 995–997.

    Article  MathSciNet  Google Scholar 

  14. G. A. Glatzmaier, P. H. Roberts: A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377 (1995), 203–209.

    Article  Google Scholar 

  15. Y. Hardy, W.-H. Steeb: The Rikitake two-disc dynamo system and domains with periodic orbits. Int. J. Theor. Phys. 38 (1999), 2413–2417.

    Article  Google Scholar 

  16. D. D. Holm, J. E. Marsden: The rotor and the pendulum. Symplectic Geometry and Mathematical Physics. Birkhäuser, Boston, 1991, pp. 189–203.

    MATH  Google Scholar 

  17. K. Huang, S. Shi, Z. Xu: Integrable deformations, bi-Hamiltonian structures and non-integrability of a generalized Rikitake system. Int. J. Geom. Methods Mod. Phys. 16 (2019), Article ID 1950059, 17 pages.

  18. K. Ito: Chaos in the Rikitake two-disc dynamo system. Earth Planet. Sci. Lett. 51 (1980), 451–456.

    Article  Google Scholar 

  19. M. Ivan, G. Ivan: On the fractional Euler top system with two parameters. Int. J. Modern Eng. Research 8 (2018), 10–22.

    Google Scholar 

  20. X. Jian: Anti-synchronization of uncertain Rikitake systems via active sliding mode control. Int. J. Phys. Sci. 6 (2011), 2478–2482.

    Google Scholar 

  21. B. Kostant: Quantization and unitary representations I. Prequantization. Lectures in Modern Analysis and Applications III. Lecture Notes in Mathematics 170. Springer, Berlin, 1970, pp. 87–208.

    MATH  Google Scholar 

  22. C. Lăzureanu: Hamilton-Poisson realizations of the integrable deformations of the Rikitake system. Adv. Math. Phys. 2017 (2017), Article ID 4596951, 9 pages.

  23. C. Lăzureanu: On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control. Math. Phys. Anal. Geom. 20 (2017), Article ID 20, 22 pages.

  24. C. Lăzureanu: On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell-Bloch equations. C. R., Math., Acad. Sci. Paris 355 (2017), 596–600.

    Article  MathSciNet  Google Scholar 

  25. C. Lăzureanu: Integrable deformations of three-dimensional chaotic systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 28 (2018), Article ID 1850066, 7 pages.

  26. C. Lăzureanu, T. Bînzar: A Rikitake type system with quadratic control. Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250274, 14 pages.

  27. C. Lăzureanu, T. Bînzar: On the symmetries of a Rikitake type system. C. R., Math., Acad. Sci. Paris 350 (2012), 529–533.

    Article  MathSciNet  Google Scholar 

  28. C. Lăzureanu, C. Petrişor: Stability and energy-Casimir mapping for integrable deformations of the Kermack-McKendrick system. Adv. Math. Phys. 2018 (2018), Article ID 5398768, 9 pages.

  29. P. Libermann, C.-M. Marie: Symplectic Geometry and Analytical Mechanics. Mathematics and Its Applications 35. D. Reidel, Dordrecht, 1987.

    Book  Google Scholar 

  30. J. Llibre, X. Zhang: Invariant algebraic surfaces of the Rikitake system. J. Phys. A, Math. Gen. 33 (2000), 7613–7635.

    Article  MathSciNet  Google Scholar 

  31. R. I. McLachlan: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1995), 151–168.

    Article  MathSciNet  Google Scholar 

  32. T. McMillen: The shape and dynamics of the Rikitake attractor. Nonlinear J. 1 (1999), 1–10.

    Google Scholar 

  33. J. Moser: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math. 29 (1976), 727–747.

    Article  MathSciNet  Google Scholar 

  34. I. Pehlivan, Y. Uyaroglu: Rikitake attractor and it’s synchronization application for secure communication systems. J. Appl. Sci. 7 (2007), 232–236.

    Article  Google Scholar 

  35. M. Puta: Hamiltonian Mechanical Systems and Geometric Quantization. Mathematics and Its Applications (Dordrecht) 260. Kluwer Academic, Dordrecht, 1993.

    Book  Google Scholar 

  36. M. Puta: Lie-Trotter formula and Poisson dynamics. Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 (1999), 555–559.

    Article  MathSciNet  Google Scholar 

  37. T. Rikitake: Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 54 (1958), 89–105.

    Article  MathSciNet  Google Scholar 

  38. R. M. Tudoran, A. Aron, Ş. Nicoară: On a Hamiltonian version of the Rikitake system. SIAM J. Appl. Dyn. Sys. 8 (2009), 454–479.

    Article  MathSciNet  Google Scholar 

  39. R. M. Tudoran, A. Gîrban: On a Hamiltonian version of a three-dimensional Lotka-Volterra system. Nonlinear Anal., Real World Appl. 13 (2012), 2304–2312.

    Article  MathSciNet  Google Scholar 

  40. D. L. Turcotte: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  41. C. Valls: Rikitake system: Analytic and Darbouxian integrals. Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), 1309–1326.

    Article  MathSciNet  Google Scholar 

  42. V. Vembarasan P. Balasubramaniam: Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques. Nonlinear Dyn. 74 (2013), 31–44.

    Article  MathSciNet  Google Scholar 

  43. U. E. Vincent: Synchronization of Rikitake chaotic attractor using active control. Phys. Lett., A 343 (2005), 133–138.

    Article  Google Scholar 

  44. Z. Wei, W. Zhang, Z. Wang, M. Yao: Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550028, 11 pages.

  45. Z. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec: Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays. Appl. Math. Comput. 347 (2019), 265–281.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Lăzureanu.

Additional information

The work has been supported by research grants PCD-TC-2017 of Politehnica University Timişoara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lăzureanu, C., Petrişor, C. & Hedrea, C. On a Deformed Version of the Two-Disk Dynamo System. Appl Math 66, 345–372 (2021). https://doi.org/10.21136/AM.2021.0303-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0303-19

Keywords

MSC 2020

Navigation