Skip to main content
Log in

Continuous dependence on parameters and boundedness of solutions to a hysteresis system

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We analyze an ordinary differential system with a hysteresis-relay nonlinearity in two cases when the system is autonomous or nonautonomous. Sufficient conditions for both the continuous dependence on the system parameters and the boundedness of the solutions to the system are obtained. We give a supporting example for the autonomous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronov, A. A. Vitt, S. E. Khaikin: Theory of Oscillators. International Series of Monographs in Physics 4. Pergamon Press, Oxford, 1966.

    MATH  Google Scholar 

  2. M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba, D. Rachinskii: Dynamics of discrete time systems with a hysteresis stop operator. SIAM J. Appl. Dyn. Syst. 16 (2017), 91–119.

    Article  MathSciNet  Google Scholar 

  3. K. J. Åström: Oscillations in systems with relay feedback. Adaptive Control, Filtering, and Signal Processing. The IMA Volumes in Mathematics and Its Applications 74. Springer, New York, 1995, pp. 1–25.

    Chapter  Google Scholar 

  4. Z. Balanov, P. Kravetc, W. Krawcewicz, D. Rachinskii: Equivariant degree method for analysis of Hopf bifurcation of relative periodic solutions: Case study of a ring of oscillators. J. Differ. Equations 265 (2018), 4530–4574.

    Article  MathSciNet  Google Scholar 

  5. G. Bertotti, I. D. Mayergoyz (eds.): The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications. Elsevier/Academic Press, Amsterdam, 2006.

    MATH  Google Scholar 

  6. N. D. Botkin, M. Brokate, E. G. ElBehi-Gornostaeva: One-phase flow in porous media with hysteresis. Phys. B 486 (2016), 183–186.

    Article  Google Scholar 

  7. M. Brokate, P. Krejčí: Weak differentiability of scalar hysteresis operators. Discrete Contin. Dyn. Syst. 35 (2015), 2405–2421.

    Article  MathSciNet  Google Scholar 

  8. M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121. Springer, New York, 1996.

    Book  Google Scholar 

  9. R. S. Burns: Advanced Control Engineering. Butterworth-Heinemann, Oxford, 2001.

    Google Scholar 

  10. M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka, C. M. Webler: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv. Nonlinear Anal. 6 (2017), 121–145.

    Article  MathSciNet  Google Scholar 

  11. L. Fang, J. Wang, Q. Zhang: Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model. Nonlinear Dyn. 79 (2015), 1257–1273.

    Article  MathSciNet  Google Scholar 

  12. A. Fonda, M. Garrione, P. Gidoni: Periodic perturbations of Hamiltonian systems. Adv. Nonlinear Anal. 5 (2016), 367–382.

    MathSciNet  MATH  Google Scholar 

  13. K. H. Johansson, A. Rantzer, K. J. Åström: Fast switches in relay feedback systems. Automatica 35 (1999), 539–552.

    Article  Google Scholar 

  14. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva: Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence. Int. J. Robust Nonlinear Control 27 (2017), 204–211.

    Article  MathSciNet  Google Scholar 

  15. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva: Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence. Electron. J. Differ. Equ. 2017 (2017), Article ID 140, 10 pages.

  16. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva: On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity. J. Dyn. Control Syst. 23 (2017), 825–837.

    Article  MathSciNet  Google Scholar 

  17. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva: Existence of periodic modes in automatic control system with a three-position relay. Int. J. Control 93 (2020), 763–770.

    Article  MathSciNet  Google Scholar 

  18. M. A. Krasnosel’skii, A. V. Pokrovskii: Systems with Hysteresis. Springer, Berlin, 1989.

    Book  Google Scholar 

  19. G. A. Leonov, M. M. Shumafov, V. A. Teshev, K. D. Aleksandrov: Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations. Differ. Equ. 53 (2017), 1764–1816.

    Article  MathSciNet  Google Scholar 

  20. J. W. Macki, P. Nistri, P. Zecca: Mathematical models for hysteresis. SIAM Rev. 35 (1993), 94–123.

    Article  MathSciNet  Google Scholar 

  21. I. D. Mayergoyz: Mathematical Models of Hysteresis and Their Applications. Elsevier, Amsterdam, 2003.

    Google Scholar 

  22. S. McCarthy, D. Rachinskii: Dynamics of systems with Preisach memory near equilibria. Math. Bohem. 139 (2014), 39–73.

    Article  MathSciNet  Google Scholar 

  23. P. N. Paraskevopoulos: Modern Control Engineering. Control Engineering (Boca Raton) 10. Marcel Dekker, New York, 2001.

    MATH  Google Scholar 

  24. A. Pimenov, D. Rachinskii: Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator. Math. Bohem. 139 (2014), 285–298.

    Article  MathSciNet  Google Scholar 

  25. A. V. Pokrovskii: Existence and computation of stable modes in relay systems. Autom. Remote Control 47 (1986), 451–458

    Google Scholar 

  26. A. V. Pokrovskii: Existence and computation of stable modes in relay systems. translation fro. Avtom. Telemekh. 1986 (1986), 16–23.

    Google Scholar 

  27. D. K. Potapov, V. V. Yevstafyeva: Lavrent’ev problem for separated flows with an external perturbation. Electron. J. Differ. Equ. 2013 (2013), Article ID 255, 6 pages.

  28. D. Rachinskii: Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 227–243.

    Article  MathSciNet  Google Scholar 

  29. A. M. Solovyov, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, M. A. Popov, E. G. Kabulova: Hysteretic nonlinearity and unbounded solutions in oscillating systems. Procedia Engineering 201 (2017), 578–583.

    Article  Google Scholar 

  30. Y. Z. Tsypkin: Relay Control Systems. Cambridge University Press, Cambridge, 1984.

    MATH  Google Scholar 

  31. S. Varigonda, T. T. Georgiou: Dynamics of relay relaxation oscillators. IEEE Trans. Autom. Control 46 (2001), 65–77.

    Article  MathSciNet  Google Scholar 

  32. A. Visintin: Differential Models of Hysteresis. Applied Mathematical Sciences 111. Springer, Berlin, 1994.

    Book  Google Scholar 

  33. A. Visintin: Ten issues about hysteresis. Acta Appl. Math. 132 (2014), 635–647.

    Article  MathSciNet  Google Scholar 

  34. A. Visintin: P.D.E.s with hysteresis 30 years later. Discrete Contin. Dyn. Syst., Ser. S 8 (2015), 793–816.

    MathSciNet  MATH  Google Scholar 

  35. V. V. Yevstafyeva: On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix. Autom. Remote Control 76 (2015), 977–988

    Article  MathSciNet  Google Scholar 

  36. V. V. Yevstafyeva: On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix. translation fro. Avtom. Telemekh. 2015 (2015), 42–56.

    MathSciNet  MATH  Google Scholar 

  37. V. V. Yevstafyeva: Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero. Ukr. Math. J. 70 (2019), 1252–1263

    Article  MathSciNet  Google Scholar 

  38. V. V. Yevstafyeva: Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero. translation from. Ukr. Mat. Zh. 70 (2018), 1085–1096.

    MathSciNet  Google Scholar 

  39. C.-C. Yu: Autotuning of PID Controllers: Relay Feedback Approach. Advances in Industrial Control. Springer, Berlin, 1999.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy K. Potapov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamachkin, A.M., Potapov, D.K. & Yevstafyeva, V.V. Continuous dependence on parameters and boundedness of solutions to a hysteresis system. Appl Math 67, 65–80 (2022). https://doi.org/10.21136/AM.2021.0085-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0085-20

Keywords

MSC 2020

Navigation