Skip to main content
Log in

CMOS realization of OTA based tunable grounded meminductor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A simple and robust design for CMOS realization of a tunable grounded meminductor using three operational transconductance amplifier (OTA) and two capacitors have been proposed. Both theoretical analyses and simulation using Cadence Virtuoso at 0.18 \(\upmu {m}\) CMOS technology parameters verify the validity of the meminductor. Its meminductance can be tuned with the help of external bias voltage and has an operating frequency of 10 MHz, which makes it suitable for high-frequency applications. The proposed meminductor can also be configured using both incremental and decremental mode by interchanging the pin of OTA. Various parameters variability analysis like process variation, capacitor variation, voltage variation, temperature variation, and frequency variation has been carried out and our proposed meminductor has shown excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chua, L. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337.

    Article  Google Scholar 

  2. Ventra, M. Di, Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors and meminductors. Proceedings of the IEEE, 97(10), 1717–1724. https://doi.org/10.1109/JPROC.2009.2021077.

    Article  Google Scholar 

  3. Driscoll, T., Quinn, J., Klein, S., Kim, H. T., Kim, B. J., Pershin, Y. V., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502. https://doi.org/10.1063/1.3485060.

    Article  Google Scholar 

  4. Sung, H., Chang, T., Ebong, I., Bhavitavya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10(4), 1297–1301. https://doi.org/10.1021/nl904092h.

    Article  Google Scholar 

  5. Hu, Z. H., Li, Y. X., Jia, L., & Yu, J. B. (2010). Chaotic oscillator based on current-controlled meminductor. In Proceedings of IEEE ICCCAS, pp. 820-823. https://doi.org/10.1109/ICCCAS.2010.5581866.

  6. Yesil, A., Babacan, Y., & Kacar, F. (2018). Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 1123–1132. https://doi.org/10.1109/TCAD.2018.2834399.

    Article  Google Scholar 

  7. Shin, S., Kim, K., & Kang, S. M. (2010). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274. https://doi.org/10.1109/TNANO.2009.2038610.

    Article  Google Scholar 

  8. Strukov, D. B., Stewart, G. S., & Williams, R. S. (2008). The missing memristor found. Nature Letters, 453, 80–83. https://doi.org/10.1038/nature06932.

    Article  Google Scholar 

  9. Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits Signal Process, 89(3), 655–663. https://doi.org/10.1007/s10470-016-0785-2.

    Article  Google Scholar 

  10. Sanchez- Lopez, S., Mendoza-Lopez, J., Aguilar, M. A., & Montero, C. M. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313. https://doi.org/10.1109/TCSII.2014.2312806.

    Article  Google Scholar 

  11. Vista, J., & Ranjan, A. (2019). Simple floating MOS memristor for high frequency application. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(5), 1186–1195. https://doi.org/10.1109/TVLSI.2018.2890591.

    Article  Google Scholar 

  12. Biolek, D., Bajer, J., Biolkova, V., Kolka, Z. (2011). Mutators for transforming non-linear resistor into memristor. In 20th European Conference on Circuit Theory and Design (ECCTD), pp. 488-491. https://doi.org/10.1109/ECCTD.2011.6043393.

  13. Fitch, A. L., Iu, H. H. C., Wang, X. Y., Sreeram, V., Qi, W. G. (2012). Realization of an analog model of memristor based on lightdependent resistor. In IEEE international symposium on circuits and systems, pp. 1139–1142. https://doi.org/10.1109/ISCAS.2012.6271433.

  14. Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244. https://doi.org/10.1049/el.2010.7328.

    Article  Google Scholar 

  15. Liang, Y., Yu, D. S., & Chen, H. (2013). A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 62(15), 158501. https://doi.org/10.7498/aps.62.158501.

    Article  Google Scholar 

  16. Kanyal, G., Kumar, P., Paul, S. K., & Kumar, A. (2018). OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-International Journal of Electronics and Communications, 92, 124–145. https://doi.org/10.1016/j.aeue.2018.05.027.

    Article  Google Scholar 

  17. Kumar, R., Kursun, V. (2006). Impact of temperature fluctuations on circuit characteristics in 180nm and 65nm CMOS technologies. In IEEE international symposium on circuits and systems, pp. 1–5. https://doi.org/10.1109/ISCAS.2006.1693470.

  18. Biolek, D., Biolek, Z., & Biolkova, V. (2011). PSPICE modelling of meminductor. Analog Integrated Circuits and Signal Processing, 66, 129–137. https://doi.org/10.1007/s10470-010-9505-5.

    Article  MATH  Google Scholar 

  19. Pershin, Y. V., & Di Ventra, M. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518. https://doi.org/10.1049/el.2010.2830.

    Article  Google Scholar 

  20. Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems-II: Express Briefs, 61(5), 299–303. https://doi.org/10.1109/TCSII.2014.2312807.

    Article  Google Scholar 

  21. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. Journal of Semiconductor Technology And science, 14(6), 750–754. https://doi.org/10.5573/JSTS.2014.14.6.750.

    Article  Google Scholar 

  22. Vista, J., & Ranjan, A. (2020). High frequency meminductor emulator employing VDTA and its application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10), 2020–2028. https://doi.org/10.1109/TCAD.2019.2950376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Kumar, K. & Kumar, P. CMOS realization of OTA based tunable grounded meminductor. Analog Integr Circ Sig Process 107, 475–482 (2021). https://doi.org/10.1007/s10470-021-01808-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01808-z

Keywords

Navigation