Skip to main content
Log in

Lower Ionosphere of the Arctic in June 2015 during a Strong Magnetic Storm and Solar X-Ray Flares According to Eclipsing Radiosonde Data on GPS–Formosat Intersatellite Paths

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The results of are presented of determining the height profiles of electron concentration \(N(h)\) during the daytime solstice of June 19–30, 2015. Dependences of \(N(h)\) recorded in a calm state and the presence of sporadic structures of varying intensity are given. The histograms of the distribution of the variable plasma concentration for four values of the height of the lower ionosphere were determined. It is shown that, at an altitude of 100 km, an increase in the electron concentration by a factor of 4–5 occurs under the action of an X-ray flare from the Sun. Manifestations of different types of sporadic formations in changes in the amplitude of radio signals are considered and three types of amplitude variations characteristic of sporadic structures are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hajj, G.A. and Romans, L.I., Ionospheric electron density profiles obtained with the GPS: Results from the GPS/MET experiment, Radio Sci., 1998, vol. 33, no. 1, pp. 175–190.

    Article  ADS  Google Scholar 

  2. Kucheryavenkov, A.I., Yakovlev, O.I., Kucheryavenkova, I.L., and Samoznaev, L.N., Regularities of ionospheric variations of the frequency and amplitude of radio waves in radio-shadow experiments on the satellite-to-satellite path, J. Commun. Technol. Electron., 1998, vol. 43, no. 8, pp. 880–885.

    Google Scholar 

  3. Schreiner, W., Sokolovsky, S., Rocken, C., and Hunt, D., Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 1999, vol. 34, no. 4, pp. 949–966.

    Article  ADS  Google Scholar 

  4. Hajj, G.A., Lee, L.C., Pi, X., et al., Cosmic GPS ionospheric sensing and space weather, Terr. Atmos. Oceanic Sci., 2000, vol. 11, no. 1, pp. 235–272.

    Article  Google Scholar 

  5. Hocke, K., Igarashi, K., Nakamura, M., et al., Global sounding of sporadic E layers by the GPS–MET radio occultation experiment, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 18, pp. 1973– 1980.

    Article  ADS  Google Scholar 

  6. Yakovlev, O.I., Matyugov, S.S., and Anufriev, V.A., Scintillations centimeter waves and atmospheric irregularities from radio occultation data, Radio Sci., 2003, vol. 38, no. 2, pp. 2-1–2-11. https://doi.org/10.1029/2000RS002546

  7. Yakowski, N., Leitinger, R., and Angling, M., Radio occultation techniques for probing the ionosphere, Ann. Geophys., 2004, vol. 47, nos. 2–3, pp. 1049–1066.

    Google Scholar 

  8. Pavelyev, A.G., Matyugov, S.S., and Yakovlev, O.I., Global satellite monitoring of the atmosphere and ionosphere, J. Commun. Technol. Electron., 2008, vol. 53, no. 9, pp. 1021–1033.

    Article  Google Scholar 

  9. Yakovlev, O.I., Anufriev, V.A., Wickert, J., and Matyugov, S.S., Potentialities of radio-occultation monitoring of the lower ionosphere on satellite-to-satellite paths, J. Commun. Technol. Electron., 2008, vol. 53, no. 2, pp. 155–162.

    Article  Google Scholar 

  10. Yakovlev, O.I., Wickert, J., Pavelyev, A.G., et al., Sporadic structures in equatorial ionosphere as revealed from GPS occultation data, Acta Astronaut., 2008, vol. 63, nos. 11–12, pp. 1350–1359.

    Article  ADS  Google Scholar 

  11. Matyugov, S.S., Yakovlev, O.I., and Anufriev, V.A., Sporadic structures in the equatorial ionosphere inferred from radio occultation data on satellite-to-satellite paths, Radiophys. Quantum Electron., 2008, vol. 51, no. 3, pp. 161–169.

    Article  ADS  Google Scholar 

  12. Matyugov, S.S., Yakovlev, O.I., Pavel’ev, A.G., et al., Sporadic structures in the equatorial ionosphere from the GPS–Formosat-3 radio-occultation experiments, Radiophys. Quantum Electron., 2015, vol. 58, no. 4, pp. 233–244.

    Article  ADS  Google Scholar 

  13. Polar Upper Atmosphere, Deer, C.S. and Holtet, J.A., Eds., Dordrecht: Reidel, 1981.

    Google Scholar 

  14. Pavelyev, A., Igarashi, K., Reigber, C., et al., First application of the radioholographic method to wave observations in the upper atmosphere, Radio Sci., 2002, vol. 37, no. 3, pp. 15-1–15-11. https://doi.org/10.1029/2000RS002501

  15. Wickert, J., Yakovlev O.I., Pavel’ev A.G., et al., Ionospheric fluctuations of decimeter radio waves along satellite-to-satellite paths, J. Commun. Technol. Electron., 2004, vol. 49, no. 10, pp. 1109–1116.

    Google Scholar 

  16. Yakovlev, O.I., Wickert, J., Matyugov S.S., and Anufriev, V.A., Radiowave fluctuations in the polar ionosphere on the satellite-to-satellite paths under high solar activity, Radiophys. Quantum Electron., 2006, vol. 49, no. 3, pp. 167–173.

    Article  ADS  Google Scholar 

  17. Yakovlev, O.I., Matyugov, S.S., and Anufriev, V.A., Lower polar ionosphere during a solar flare as revealed from radiooccultation data in satellite-to-satellite links, Radiophys. Quantum Electron., 2009, vol. 52, no. 3, pp. 165–174.

    Article  ADS  Google Scholar 

  18. Yakovlev, O.I., Matyugov, S.S., and Anufriev V.A., Sporadic structures and small-scale irregularity in the nighttime polar ionosphere in the period of high solar activity according to the data of radio occultation measurements on satellite-to-satellite paths, Cosmic Res., 2009, vol. 47, no. 4, pp. 259–267.

    Article  ADS  Google Scholar 

  19. Yakovlev, O.I., Wickert, J., Pavelyev, A.G., et al., Results of radio occultation measurement of polar ionosphere at satellite paths during strong flare solar activity, Acta Astronaut., 2010, vol. 67, nos. 3–4, pp. 315–323.

    Article  ADS  Google Scholar 

  20. Atmosphere and Climate Studies by Occultation Methods, Foelsche, U., Kirchengast, G., and Steiner, A., Eds., Berlin: Springer, 2006.

    Google Scholar 

  21. New Horizons in Occultation Research, Steiner, A., Pirscher, B., Foelsche, U., and Kirchengast, G., Eds., Berlin: Springer, 2009.

    Google Scholar 

  22. Liou, Y.A., Pavelyev, A.G., Matyugov, S.S., et al., Radio Occultation Method for Remote Sensing of the Atmosphere and Ionosphere, IntechOpen, 2010. https://doi.org/10.5772/46148

    Book  Google Scholar 

  23. Yakovlev, O.I., Pavel’ev, A.G., and Matyugov, S.S., Sputnikovyi monitoring Zemli. Radiozatmennyi monitoring atmosfery i ionosfery (Satellite Monitoring of the Earth. Radio Occultation Monitoring of the Atmosphere and Ionosphere), Moscow: Librokom, 2010.

  24. Whitehead, J.D., The formation of the sporadic E layer in the temperature zones, J. Atmos. Terr. Phys., 1961, vol. 20, pp. 49–58. https://doi.org/10.1016/0021-9169(61)90097-6

    Article  ADS  Google Scholar 

  25. Carrasco, A.J., Batista, I.S., and Abdu, M.A., Simulation of the sporadic E layer response to prereversal associated evening vertical electric field, J. Geophys. Res., 2007, vol. 112, id. A06324. https://doi.org/10.1029/2006JA012143

  26. Zeng, Z. and Sokolovskiy, S., Effect of sporadic E cloud on GPS radio occultation signal, Geophys. Rev. Lett., 2010, vol. 37, id. L18817. https://doi.org/10.1029/2010GL044561

  27. Arras, C. and Wickert, J., Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements, J. Atmos. Sol. Terr. Phys., 2018, vol. 171, pp. 60–63.

    Article  ADS  Google Scholar 

  28. Wen-Hao Yeh, Cheng-Yung Huang, Tung-Yuan Hsiao, et al., Amplitude morphology of GPS radio occultation data for sporadic E layers, J. Geophys. Res., 2012, vol. 117, id. A11304. https://doi.org/10.1029/2012JA017875

  29. Kolosov, M.A., Yakovlev, O.I., Efimov, A.I., et al., Radio occultation of the Venusian atmosphere and bistatic radiolocation of the surface of Venus using the Venera-9 and Venera-10 satellites, Radio Sci., 1979, vol. 14, no. 1, pp. 163–173.

    Article  ADS  Google Scholar 

  30. Kolosov, M.A., Yakovlev, O.I., Trusov, B.P., et al., On radio sounding of the atmosphere of Venus using Venera-9 and Venera-10 satellites, Radiotekh. Elektron., 1976, vol. 21, no. 8, pp. 1585.

    Google Scholar 

  31. Yakovlev, O.I., Grishmanovskii, V.A., Eliseev, S.D., et al., Two-satellite radio probing of the Earth’s atmosphere, Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 1, pp. 101–103.

    ADS  Google Scholar 

  32. Eliseev, S.D. and Yakovlev, O.I., Using millimeter radio waves to probe the earth’s atmosphere, Radiophys. Quantum Electron., 1989, vol. 32, no. 1, pp. 1–7.

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed in the framework of state assignment no. 0030-2019-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Yakovlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyugov, S.S., Yakovlev, O.I. & Pavel’ev, A.A. Lower Ionosphere of the Arctic in June 2015 during a Strong Magnetic Storm and Solar X-Ray Flares According to Eclipsing Radiosonde Data on GPS–Formosat Intersatellite Paths. Cosmic Res 59, 96–103 (2021). https://doi.org/10.1134/S0010952521020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521020052

Navigation