Skip to main content
Log in

Accelerator Production Method in 140Nd/140Pr Radioisotope Generator Based on Electron Capture

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

140Nd/140Pr radioisotope generator has importance for cancer diagnosis purposes and promises as an in vivo generator in positron emission tomography (PET). 140Nd/140Pr radioisotope generator is based on physicochemical processes, such as electron capture (EC), between parent (140Nd) and daughter (140Pr) radioisotopes. The production of the parent 140Nd radioisotope was performed by particle accelerators using charged particle induced reaction processes for energy region of Eparticle = 100 → 1 MeV in irradiation time of 1 h with constant beam current of 1 µA. In addition to the production of the parent 140Nd radioisotope, we also considered the direct production of 140Pr radioisotope via particle accelerators at the same conditions because 140Pr radioisotope in low-budget facilities can be directly used in PET scans such as in hospitals due to its short half-life. Hence, the cross-section and integral yield curves of reaction processes were calculated as dependent on projectile energies, and activities and yields of products were simulated. The obtained results were compared with the experimental data in the literature and provided new nuclear data to the literature which lead to the experimentalist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. Artun, Radiat. Phys. Chem. 149, 73 (2018)

    Article  ADS  Google Scholar 

  2. O. Artun, Appl. Radiat. Isot. 144, 64 (2019)

    Article  Google Scholar 

  3. O. Artun, Appl. Radiat. Isot. 127, 172 (2017)

    Article  Google Scholar 

  4. O. Artun, Nucl. Sci. Tech. 29, 137 (2018)

    Article  Google Scholar 

  5. O. Artun, Int. J. Mod. Phys. E 29(8), 2050059 (2020)

  6. O. Artun, Appl. Phys. A 126, 386 (2020)

    Article  ADS  Google Scholar 

  7. O. Artun, Appl. Radiat. Isot. 166, 109337 (2020)

    Article  Google Scholar 

  8. O. Artun, Mod.Phys. Lett. A 34, 1950154 (2019)

  9. O. Artun, Indian J. Phys. 91, 909 (2017)

    Article  ADS  Google Scholar 

  10. O. Artun, Nucl. Tech. Radiat. Protect. 32, 327 (2017)

    Article  Google Scholar 

  11. Z. Baranyai, G. Tircsó, F. Rösch, Eur. J. Inorg. Chem. 1, 36 (2020)

  12. W. Luo, Nucl. Sci. Tech. 27, 96 (2016)

  13. W. Luo, D.L. Balabanski, D. Filipescu, Nucl. Sci. Tech. 27, 113 (2016)

  14. W. Luo, B. Mariana, G. Ioana, F.M. Dan, N. Dana, B.L. Dimiter, Appl. Phys. B 122, 1 (2016)

    Article  Google Scholar 

  15. C.C. Wagner, O. Langer, Adv. Drug Deliv. Rev. 60, 539 (2011)

    Article  Google Scholar 

  16. G.W. Severin et al., Front. Med. 4, 98 (2017)

    Article  Google Scholar 

  17. K.P. Zhernosekov, D.V. Filosofov, S.M. Qaim, F. Rösch, Radiochim. Acta. 95 (2007)

  18. F. Rösch, F.F. Knapp, Kluwer. Amst. 4, 81 (2003)

    Google Scholar 

  19. C. Müller et al., Eur. J. Nucl. Med. Mol. Imaging. 41, 476 (2014)

    Article  Google Scholar 

  20. C. Müller et al., J. Nucl. Med. 53, 1951 (2012)

    Article  ADS  Google Scholar 

  21. N. Nica, Nucl. Data Sheets. 108, 1287 (2007)

    Article  ADS  Google Scholar 

  22. L. Mausner, J. Label. 89, 498 (1989)

    Google Scholar 

  23. P.E. Edem et al., Bioinorg. Chem. Appl. 2016, 6148357 (2016)

    Article  Google Scholar 

  24. NIST, (2020) Available. https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm

  25. A. Koning, S. Hilaire, S. Goriely, Talys 1.9 User Manual (2017).Available. http://www.talys.eu/download-talys/

  26. A. Hermanne, F. Tarkanyi, S. Takacs, F. Ditroi, Nucl. Instrum. Methods Phys. Res. Sect. B 383, 81 (2016)

  27. A. Hermanne et al., Nucl. Instrum. Methods Phys. Res. Sect. B 267, 727 (2009)

  28. J. Lange, H. Muenzel, Radiochim. Acta. 9, 66 (1968)

    Article  Google Scholar 

  29. K. Hilgers et al., Radiochim. Acta. 93, 553 (2005)

    Article  Google Scholar 

  30. M. Furukawa, Nucl. Phys. A 90, 253 (1967)

    Article  ADS  Google Scholar 

  31. O. Artun, XPMSP program (2020). Available. https://www.x-pmsp.com/

  32. O. Artun, Nucl. Tech. Radiat. Protect. 33, 356 (2018)

    Article  Google Scholar 

  33. S.M. Qaim, I. Spahn, S.A. Kandil, H.H. Coenen, Radiochim. Acta. 95, 313 (2007)

    Google Scholar 

  34. P.P. Dmitriev, USSR report to the I.N.D.C. Austria 222, 23 (1984)

  35. P.P. Dmitriev, N.N. Krasnov, G.A. Molin, USSR report to the I.N.D.C. Austria 210, (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Artun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artun, O. Accelerator Production Method in 140Nd/140Pr Radioisotope Generator Based on Electron Capture. Braz J Phys 51, 592–598 (2021). https://doi.org/10.1007/s13538-021-00858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00858-y

Keywords

Navigation