Skip to main content
Log in

Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, critical angular velocity, critical velocity of fluid flow and vibration control analysis of a rotating multi-hybrid nanocomposite reinforced (MHCR) cylindrical microshell covered with a piezoelectric layer as sensor and actuator (PLSA) are presented. The current non-classical model is capable of capturing the size dependency in the microshells using only one material length scale parameter; moreover, the mathematical formulation of microshells based on the classical model can be recovered from the present model by neglecting the material length scale parameter. This structure is under conveying viscous fluid, and the related force is calculated by the modified formulation of Navier–Stokes. In addition, the current structure rotates around its axial direction. The Coriolis and centrifugal effects due to the rotation are considered. For semi-numerical method, the strains and stresses can be determined through via the first-order shear deformable theory (FSDT). For accessing to various mass densities, thermal expansion as well as Poisson ratio, the rule of mixture is applied, although a modified Halpin–Tsai theory is used for obtaining the module of elasticity. The external voltage is applied to the sensor layer, while a Proportional-Derivative (PD) controller has been utilized for controlling output of sensors. The boundary conditions are derived through governing equations of the MHCR cylindrical microshell using energy method known as Hamilton’s principle and finally are solved using generalized differential quadrature method (GDQM). The outcomes show that the angular velocity, velocity of fluid flow, external force, PD controller, external voltage and MHC’s weight fraction have a considerable impact on the amplitude, and vibration behavior of a spinning MHCR cylindrical shell conveying fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen S, Hassanzadeh-Aghdam M, Ansari R (2018) An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J Alloy Compd 767:632–641

    Article  Google Scholar 

  2. Yan H, Xue X, Chen W, Wu X, Dong J, Liu Y et al (2020) Reversible na+ insertion/extraction in conductive polypyrrole-decorated nati2 (po4) 3 nanocomposite with outstanding electrochemical property. Appl Surf Sci 530:147295

    Article  Google Scholar 

  3. Guo H, Qian K, Cai A, Tang J, Liu J (2019) Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sens Actuators B 300:126846

    Article  Google Scholar 

  4. Guo H, Li X, Zhu Q, Zhang Z, Liu Y, Li Z et al (2020) Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method. Nanotechnology 31:455203

    Article  Google Scholar 

  5. Liu C, Huang X, Wu Y-Y, Deng X, Liu J, Zheng Z et al (2020) Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol Rev 9:155–169

    Article  Google Scholar 

  6. Cai C, Wu X, Liu W, Zhu W, Chen H, Qiu JCD et al (2020) Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: parameter optimization, heat treatment and mechanical performance. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.05.004

    Article  Google Scholar 

  7. Lin J, Hu J, Wang W, Liu K, Zhou C, Liu Z et al (2020) Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem Eng J 407:125783

    Article  Google Scholar 

  8. Cai C, Gao X, Teng Q, Kiran R, Liu J, Wei Q et al (2020) Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation. Mater Sci Eng. https://doi.org/10.1016/j.msea.2020.140426

    Article  Google Scholar 

  9. Yu X, Zhang J, Zhang J, Niu J, Zhao J, Wei Y et al (2019) Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates. Chem Eng J 374:316–327

    Article  Google Scholar 

  10. Wang X, Wang J, Sun X, Wei S, Cui L, Yang W et al (2018) Hierarchical coral-like NiMoSnanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res 11:988–996

    Article  Google Scholar 

  11. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683

    Article  Google Scholar 

  12. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669

    Article  Google Scholar 

  13. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, D. won Jung, et al (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  14. Ghabussi A, Marnani JA, Rohanimanesh MS (2020) Improving seismic performance of portal frame structures with steel curved dampers. Structures. https://doi.org/10.1016/j.istruc.2019.12.025

    Article  Google Scholar 

  15. Zhang Y, Yao M, Zhang W, Wen B (2017) Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp Sci Technol 68:441–453

    Article  Google Scholar 

  16. Mao J, Lu H, Zhang W, Lai S (2020) Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct 236:111813

    Article  Google Scholar 

  17. Mao J-J, Zhang W (2019) Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos Struct 216:392–405

    Article  Google Scholar 

  18. Wang A, Chen H, Zhang W (2019) Nonlinear transient response of doubly curved shallow shells reinforced with graphene nanoplatelets subjected to blast loads considering thermal effects. Compos Struct 225:111063

    Article  Google Scholar 

  19. Mao J-J, Zhang W (2018) Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos Struct 203:551–565

    Article  Google Scholar 

  20. Wang A, Chen H, Hao Y, Zhang W (2018) Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys 9:550–559

    Article  Google Scholar 

  21. Guo X, Zhang W (2016) Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Compos Struct 135:96–108

    Article  Google Scholar 

  22. Ghabussi A, Habibi M, Noormohammadi OA, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control. https://doi.org/10.1177/1077546320923930

    Article  Google Scholar 

  23. Al-Furjan M, Habibi M, Ghabussi A, Safarpour H, Safarpour M, Tounsi A (2020) Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct 228:111496

    Article  Google Scholar 

  24. Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng Part C 233:4590–4605

    Article  Google Scholar 

  25. Shi X, Li J, Habibi M (2020) On the statics and dynamics of an electro-thermo-mechanically porous GPLRCnanoshell conveying fluid flow. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1772088

    Article  Google Scholar 

  26. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech 12:2050066

    Article  Google Scholar 

  27. Zare R, Najaafi N, Habibi M, Ebrahimi F, Safarpour H (2020) Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller. Smart Struct Syst 26(4):469–480

    Google Scholar 

  28. Al-Furjan MSH, Moghadam SA, Dehini R, Shan L, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107242

    Article  Google Scholar 

  29. Mehrvarz A, Salarieh H, Alasty A, Vatankhah R (2018) Boundary vibration control of strain gradient timoshenko micro-cantilevers using piezoelectric actuators. arXiv:1812.01155

  30. Vatankhah R, Nojoumian MA, Salarieh H (2015) Vibration control of strain gradient nonlinear micro-cantilevers using piezoelectric actuators. Appl Mech Mater 789–790:967–971

    Article  Google Scholar 

  31. Wang F, Onsorynezhad S (2019) Backward mechanical-electric coupling effect of a frequency-up-conversion piezoelectric energy harvester. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p V008T10A036

  32. Gao N, Wu JH, Yu L, Hou H (2016) Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal. Int J Mod Phys B 30:1650111

    Article  Google Scholar 

  33. Gao N, Hou H, Zhang Y, Wu JH (2018) Sound absorption of a new oblique-section acoustic metamaterial with nested resonator. Mod Phys Lett B 32:1850040

    Article  Google Scholar 

  34. Gao N, Zhang Y (2019) A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber. J Vib Control 25:538–548

    Article  Google Scholar 

  35. Gao N, Wei Z, Zhang R, Hou H (2019) Low-frequency elastic wave attenuation in a composite acoustic black hole beam. Appl Acoust 154:68–76

    Article  Google Scholar 

  36. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146

    Article  Google Scholar 

  37. Zhang C, Mousavi AA (2020) Blast loads induced responses of RC structural members: State-of-the-art review. Compos Part B 195:108066

    Article  Google Scholar 

  38. Li C, Sun L, Xu Z, Wu X, Liang T, Shi W (2020) Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int J Struct Stab Dyn 20:2040011

    Article  Google Scholar 

  39. Gao N, Wei Z, Hou H, Krushynska AO (2019) Design and experimental investigation of V-folded beams with acoustic black hole indentations. J Acoust Soc Am 145:EL79–EL83

    Article  Google Scholar 

  40. Mou B, Zhao F, Qiao Q, Wang L, Li H, He B et al (2019) Flexural behavior of beam to column joints with or without an overlying concrete slab. Eng Struct 199:109616

    Article  Google Scholar 

  41. Mou B, Li X, Bai Y, Wang L (2019) Shear behavior of panel zones in steel beam-to-column connections with unequal depth of outer annular stiffener. J Struct Eng 145:04018247

    Article  Google Scholar 

  42. Mou B, Bai Y (2018) Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone. Eng Struct 168:487–504

    Article  Google Scholar 

  43. Liu J, Yi Y, Wang X (2020) Exploring factors influencing construction waste reduction: a structural equation modeling approach. J Clean Prod 276:123185

    Article  Google Scholar 

  44. Liu C, Wang F, He L, Deng X, Liu J, Wu Y (2020) Experimental and numerical investigation on dynamic responses of the umbrella membrane structure excited by heavy rainfall. J Vib Control. https://doi.org/10.1177/1077546320932691

    Article  Google Scholar 

  45. Huang Z, Zheng H, Guo L, Mo D (2020) Influence of the position of artificial boundary on computation accuracy of conjugated infinite element for a finite length cylindrical shell. Acoust Aust 48:287–294

    Article  Google Scholar 

  46. Liu C, Wang F, Deng X, Pang S, Liu J, Wu Y et al (2020) Hailstone-induced dynamic responses of pretensioned umbrella membrane structure. Adv Struct Eng. https://doi.org/10.1177/1369433220940149

    Article  Google Scholar 

  47. Gao N, Hou H, Cheng B, Zhang R (2018) A hollow inclusion self-similarity phononic crystal with an ultra-low-frequency bandgap. Int J Mod Phys B 32:1850005

    Article  Google Scholar 

  48. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  49. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin-Walled Struct 157:107111

    Article  Google Scholar 

  50. Bai Y, Alzahrani B, Baharom S, Habibi M (2020) Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure. Eng Comput. https://doi.org/10.1007/s00366-020-01191-9

    Article  Google Scholar 

  51. Al-Furjan M, Habibi M, Jung DW, Safarpour H (2020) Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos Struct 257:113152

    Article  Google Scholar 

  52. Al-Furjan M, Fereidouni M, Sedghiyan D, Habibi M, Jung D (2020) Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses. Compos Struct 257:113146

    Article  Google Scholar 

  53. Al-Furjan M, Habibi M, Ebrahimi F, Mohammadi K, Safarpour H (2020) Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. https://doi.org/10.1080/17455030.2020.1831099

    Article  MATH  Google Scholar 

  54. Al-Furjan M, Habibi M, Ebrahimi F, Chen G, Safarpour M, Safarpour H (2020) A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem. Eur Phys J Plus 135:1–45

    Article  Google Scholar 

  55. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  56. Moayedi H, Ebrahimi F, Habibi M et al (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  57. Safarpour M, Ebrahimi F, Habibi M et al (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  58. Esmailpoor ZH, Pourghader J, Hashemabadi D, Sharifi FB, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach 47:521–545

    Article  Google Scholar 

  59. Zhu L, Zhang C, Guan X, Uy B, Sun L, Wang B (2018) The multi-axial strength performance of composited structural BCW members subjected to shear forces. Steel Compos Struct 27:75–87

    Google Scholar 

  60. Gholipour G, Zhang C, Mousavi AA (2020) Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads. Eng Struct 219:110924

    Article  Google Scholar 

  61. Liu C, Deng X, Liu J, Peng T, Yang S, Zheng Z (2020) Dynamic response of saddle membrane structure under hail impact. EngStruct 214:110597

    Google Scholar 

  62. Zhang C, Abedini M, Mehrmashhadi J (2020) Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity arbitrary Lagrangian-Eulerian simulation. EngStruct 224:111219

    Google Scholar 

  63. Li Z, Zhou H, Hu D, Zhang C (2020) Yield criterion for rocklike geomaterials based on strain energy and CMP model. Int J Geomech 20:04020013

    Article  Google Scholar 

  64. Zhang C, Gholipour G, Mousavi AA (2020) State-of-the-Art review on responses of RC structures subjected to lateral impact loads. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09467-5

    Article  Google Scholar 

  65. Sun L, Li C, Zhang C, Liang T, Zhao Z (2019) The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring. Sensors 19:1851

    Article  Google Scholar 

  66. Zhang C, Gholipour G, Mousavi AA (2019) Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng Struct 181:124–142

    Article  Google Scholar 

  67. Mousavi AA, Zhang C, Masri SF, Gholipour G (2020) Structural damage localization and quantification based on a CEEMDAN Hilbert transform neural network approach: a model steel truss bridge case study. Sensors 20:1271

    Article  Google Scholar 

  68. Safarpour H, Ghanizadeh SA, Habibi M (2018) Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur Phys J Plus 133:532

    Article  Google Scholar 

  69. Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control. https://doi.org/10.1177/1077546319828465

    Article  MathSciNet  Google Scholar 

  70. Hajmohammad MH, Farrokhian A, Kolahchi R (2018) Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory. Aerosp Sci Technol 78:260–270

    Article  Google Scholar 

  71. Gao N, Hou H, Wu JH (2018) A composite and deformable honeycomb acoustic metamaterial. Int J Mod Phys B 32:1850204

    Article  Google Scholar 

  72. Wang L, Huang Y, Xie Y, Du Y (2020) A new regularization method for dynamic load identification. Sci Prog 103:0036850420931283

    Article  Google Scholar 

  73. Shariati A, Habibi M, Tounsi A et al (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  74. Shamsaddini Lori E, Ebrahimi F, Elianddy Bin Supeni E et al (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  75. Zhang C, Wang H (2020) Swing vibration control of suspended structures using the active rotary inertia driver system: theoretical modeling and experimental verification. Struct Control Health Monit 27:e2543

    Article  Google Scholar 

  76. Alam Z, Sun L, Zhang C, Su Z, Samali B (2020) Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure. StructInfrastructEng 17:86–102

    Google Scholar 

  77. Zhu L, Kong L, Zhang C (2020) Numerical study on hysteretic behaviour of horizontal-connection and energy-dissipation structures developed for prefabricated shear walls. Appl Sci 10:1240

    Article  Google Scholar 

  78. Al-Furjan MSH, Mohammadgholiha M, Alarifi IM et al (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  79. Ke L, Wang Y, Reddy J (2014) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636

    Article  Google Scholar 

  80. Liu H, Shen S, Oslub K et al (2021) Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity. Eng Comput. https://doi.org/10.1007/s00366-021-01316-8

    Article  Google Scholar 

  81. Wang Z, Yu S, Xiao Z, Habibi M (2020) Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk. Mech Adv Mater Struct 1–14. https://doi.org/10.1080/15376494.2020.1824284

  82. Ni T, Yao Y, Chang H, Lu L, Liang H, Yan A et al (2019) LCHR-TSV: novel low cost and highly repairable honeycomb-based TSV redundancy architecture for clustered faults. IEEE Trans Comput-Aided Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.2019.2946243

    Article  Google Scholar 

  83. Qian J, Feng S, Tao T, Hu Y, Li Y, Chen Q et al (2020) Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photonics 5:046105

    Article  Google Scholar 

  84. Qian J, Feng S, Li Y, Tao T, Han J, Chen Q et al (2020) Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt Lett 45:1842–1845

    Article  Google Scholar 

  85. Yang W, Zhao Y, Wang D, Wu H, Lin A, He L (2020) Using principal components analysis and idw interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China. Int J Environ Res Public Health 17:2942

    Article  Google Scholar 

  86. Wu T, Xiong L, Cheng J, Xie X (2020) New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller. Inf Sci 521:231–250

    Article  MathSciNet  MATH  Google Scholar 

  87. Lv Z, Xiu W (2019) Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2942719

    Article  Google Scholar 

  88. Lv Z, Kumar N (2020) Software defined solutions for sensors in 6G/IoE. Comput Commun 153:42–47

    Article  Google Scholar 

  89. Li T, Xu M, Zhu C, Yang R, Wang Z, Guan Z (2019) A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans Image Process 28:5663–5678

    Article  MathSciNet  MATH  Google Scholar 

  90. Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P (2020) Hybrid microgrid many-objective sizing optimization with Fuzzy decision. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3026140

    Article  Google Scholar 

  91. Zhao Y, Moradi Z, Davoudi M et al (2021) Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-020-01242-1

    Article  Google Scholar 

  92. Ma L, Liu X, Moradi Z (2021) On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation. Eng Comput. https://doi.org/10.1007/s00366-020-01210-9

    Article  Google Scholar 

  93. Huang X, Zhu Y, Vafaei P et al (2021) An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate. Eng Comput. https://doi.org/10.1007/s00366-021-01320-y

    Article  Google Scholar 

  94. Guo Y, Mi H, Habibi M (2021) Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system. Mech Syst Signal Process 157:107723. https://doi.org/10.1016/j.ymssp.2021.107723

    Article  Google Scholar 

  95. Dai Z, Jiang Z, Zhang L, Habibi M (2021) Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell. Adv Nano Res 10(2):175. https://doi.org/10.12989/anr.2021.10.2.175

    Article  Google Scholar 

  96. Kiani Y (2017) Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method. Thin-Walled Struct 119:47–57

    Article  Google Scholar 

  97. Ke L-L, Wang Y-S, Yang J, Kitipornchai S (2014) The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater Struct 23:125036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Habibi or Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Bolandi, S.Y., Habibi, M. et al. Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow. Engineering with Computers 38 (Suppl 5), 4097–4112 (2022). https://doi.org/10.1007/s00366-020-01255-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01255-w

Keywords

Navigation