Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy

Abstract

Imaging evanescent waves is of crucial importance for sub-wavelength-scale investigation of various phenomena. However, frequently used techniques for near-field imaging require either a strong perturbation of the field, long acquisition times or complex electron-based tools. Here, we introduce nonlinear near-field optical microscopy (NNOM), which is capable of real-time evanescent wave imaging by nonlinear wave mixing while using only standard optical components. As a proof-of-concept, we present non-perturbative, single-shot mapping of evanescent plasmonic patterns, utilizing the nonlinearity of the host metal, and monitor in real time the externally controlled changes to the patterns. We further demonstrate the ability to extract the full field information—the amplitude and phase of all electric-field components—in a polarization-sensitive, spin-selective manner. This simple and highly tunable technique could be extended to deep sub-wavelength imaging of polaritons in two-dimensional materials or other nanophotonic guided modes, for swift photonic device characterization and optimized light−matter interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept and experimental realization for NNOM.
Fig. 2: Spin-selective imaging using NNOM in the circular polarization basis.
Fig. 3: NNOM in the linear polarization basis.
Fig. 4: Enhanced resolution in circular and non-circular symmetries.
Fig. 5: Nonlinear read-out of actively controlled plasmonic fields.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request

References

  1. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).

    ADS  Google Scholar 

  2. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    ADS  Google Scholar 

  3. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    Google Scholar 

  4. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    ADS  Google Scholar 

  5. Schmidt, O. et al. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002).

    ADS  Google Scholar 

  6. Gersen, H. et al. Real-space observation of ultraslow light in photonlc crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    ADS  Google Scholar 

  7. Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000).

    ADS  Google Scholar 

  8. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).

    ADS  Google Scholar 

  9. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. A 362, 787–805 (2004).

    ADS  Google Scholar 

  10. Fischer, U. C., Dürig, U. T. & Pohl, D. W. Near-field optical scanning microscopy in reflection. Appl. Phys. Lett. 52, 249–251 (1988).

    ADS  Google Scholar 

  11. Koenderink, A. F., Kafesaki, M., Buchler, B. C. & Sandoghdar, V. Controlling the resonance of a photonic crystal microcavity by a near-field probe. Phys. Rev. Lett. 95, 153904 (2005).

    ADS  Google Scholar 

  12. Sun, J., Carney, P. S. & Schotland, J. C. Strong tip effects in near-field scanning optical tomography. J. Appl. Phys. 102, 103103 (2007).

    ADS  Google Scholar 

  13. Drezet, A. et al. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B 149, 220–229 (2008).

    Google Scholar 

  14. Andrew Chan, K. L. & Kazarian, S. G. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem. Soc. Rev. 45, 1850–1864 (2016).

    Google Scholar 

  15. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    ADS  Google Scholar 

  16. Vesseur, E. J. R., De Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007).

    ADS  Google Scholar 

  17. Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    ADS  Google Scholar 

  18. Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 1–7 (2015).

    Google Scholar 

  19. Luo, C. et al. Probing polaritons in 2D materials. Adv. Opt. Mater. 8, 1901416 (2020).

    Google Scholar 

  20. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Google Scholar 

  21. Campagnola, P. J., Wei, M., De, Lewis, A. & Loew, L. M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999).

    Google Scholar 

  22. Harutyunyan, H., Palomba, S., Renger, J., Quidant, R. & Novotny, L. Nonlinear dark-field microscopy. Nano Lett. 10, 5076–5079 (2010).

    ADS  Google Scholar 

  23. Palomba, S., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A 11, 114030 (2009).

    ADS  Google Scholar 

  24. Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

    ADS  Google Scholar 

  25. Renger, J., Quidant, R., Van Hulst, N., Palomba, S. & Novotny, L. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009).

    ADS  Google Scholar 

  26. Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation of surface plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

    Google Scholar 

  27. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Google Scholar 

  28. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  Google Scholar 

  29. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Google Scholar 

  30. Woessner, A. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  31. Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).

    ADS  Google Scholar 

  32. Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    ADS  Google Scholar 

  33. Harutyunyan, H., Palomba, S., Renger, J., Quidant, R. & Novotny, L. Nonlinear dark-field microscopy. Nano Lett. 10, 5076–5079 (2010).

    ADS  Google Scholar 

  34. Boyd, R. W. Nonlinear Optics (Elsevier, 2008).

  35. Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    ADS  Google Scholar 

  36. Ostrovsky, E., Cohen, K., Tsesses, S., Gjonaj, B. & Bartal, G. Nanoscale control over optical singularities. Optica 5, 283–288 (2018).

    ADS  MATH  Google Scholar 

  37. Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Google Scholar 

  38. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    ADS  Google Scholar 

  39. Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987).

    ADS  Google Scholar 

  40. Teperik, T. V., Archambault, A., Marquier, F. & Greffet, J. J. Huygens-Fresnel principle for surface plasmons. Opt. Express 17, 17483–17490 (2009).

    ADS  Google Scholar 

  41. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  42. Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    ADS  Google Scholar 

  43. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Google Scholar 

  44. Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photon. 14, 658–662 (2020).

    ADS  Google Scholar 

  45. Putten, E. G. V., Vellekoop, I. M. & Mosk, A. P. Spatial amplitude and phase modulation using commercial twisted nematic LCDs. Appl. Opt. 47, 2076–2081 (2008).

    ADS  Google Scholar 

  46. Spektor, G. et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X 9, 021031 (2019).

    Google Scholar 

  47. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 486, 82–85 (2012).

    ADS  Google Scholar 

  48. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    ADS  Google Scholar 

  49. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Google Scholar 

  50. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation (ISF) grant number 1750/18 and the Russel Berrie Nanotechnology Institute (RBNI) at the Technion. We acknowledge help provided in sample fabrication by the photovoltaic laboratory and the Micro-Nano Fabrication unit (MNFU) at the Technion. S.T. acknowledges support by the Adams Fellowship Program of the Israel Academy of Science and Humanities. J.K.A. acknowledges support by the Israeli Council for Higher Education scholarship programme.

Author information

Authors and Affiliations

Authors

Contributions

K.F., K.C., S.T. and G.B. conceived the project. K.F., K.C. and G.B. designed the experiments. K.F., K.C. and J.K.A. performed the experiments. K.C., K.F., S.D. and S.T. performed the sample fabrication. K.F., K.C., S.T. and G.B. analysed the experimental data and wrote the manuscript, with input from the other authors.

Corresponding author

Correspondence to Guy Bartal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Photonics thanks Harald Giessen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7.

Supplementary Video 1

Monitoring the change in the 𝜎̂ component of the plasmonic mode of a circular coupling grating, as the excitation beam is gradually altered from \(\hat \sigma _ -\) to \(\hat \sigma _ +\) circular polarization.

Supplementary Video 2

Monitoring the transition between the two circular in-plane plasmonic field components generated by a \(\hat \sigma _ -\) polarized beam in a circularly symmetric plasmonic excitation, by varying the pump polarization from \(\hat \sigma -\) to \(\hat \sigma +\).

Supplementary Video 3

Monitoring the transition between the two linear in-plane plasmonic field components by rotating the linear polarization of the pump beam.

Supplementary Video 4

Monitoring the transition between the two circular in-plane plasmonic field components generated by a \(\hat \sigma -\) polarized beam in hexagonal plasmonic excitation, by varying the pump polarization from \(\hat \sigma -\) to \(\hat \sigma +\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frischwasser, K., Cohen, K., Kher-Alden, J. et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics 15, 442–448 (2021). https://doi.org/10.1038/s41566-021-00782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00782-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing