Original article
Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions,

https://doi.org/10.1016/j.jpha.2021.03.014Get rights and content
Under a Creative Commons license
open access

Highlights

  • We investigated the GSH-mediated metabolic pathway of antitumor bisacridine C-2028.

  • Non-enzymatic and GST-catalyzed GSH conjugation of C-2028 was observed.

  • The action of human recombinant GSTP1-1 in C-2028 metabolism was proved.

  • GSH conjugation occurred without the prior CYP450-mediated activation of C-2028.

  • GSH conjugation of C-2028 molecule took place on the system containing nitro group.

Abstract

Unsymmetrical bisacridines (UAs) are a novel potent class of antitumor-active therapeutics. A significant route of phase II drug metabolism is conjugation with glutathione (GSH), which can be non-enzymatic and/or catalyzed by GSH-dependent enzymes. The aim of this work was to investigate the GSH-mediated metabolic pathway of a representative UA, C-2028. GSH-supplemented incubations of C-2028 with rat, but not with human, liver cytosol led to the formation of a single GSH-related metabolite. Interestingly, it was also revealed with rat liver microsomes. Its formation was NADPH-independent and was not inhibited by co-incubation with the cytochrome P450 (CYP450) inhibitor 1-aminobenzotriazole. Therefore, the direct conjugation pathway occurred without the prior CYP450-catalyzed bioactivation of the substrate. In turn, incubations of C-2028 and GSH with human recombinant glutathione S-transferase (GST) P1-1 or with heat-/ethacrynic acid-inactivated liver cytosolic enzymes resulted in the presence or lack of GSH conjugated form, respectively. These findings proved the necessary participation of GST in the initial activation of the GSH thiol group to enable a nucleophilic attack on the substrate molecule. Another C-2028-GSH S-conjugate was also formed during non-enzymatic reaction. Both GSH S-conjugates were characterized by combined liquid chromatography/tandem mass spectrometry. Mechanisms for their formation were proposed. The ability of C-2028 to GST-mediated and/or direct GSH conjugation is suspected to be clinically important. This may affect the patient's drug clearance due to GST activity, loss of GSH, or the interactions with GSH-conjugated drugs. Moreover, GST-mediated depletion of cellular GSH may increase tumor cell exposure to reactive products of UA metabolic transformations.

Keywords

Antitumor agent
Unsymmetrical bisacridine
Metabolic detoxification
Glutathione S-Conjugate
Glutathione S-transferase
Non-enzymatic conjugation

Cited by (0)

Parts of this work were presented at the 3rd Congress of Polish Biosciences BIO2018 (Gdańsk, Poland, 2018).

Peer review under responsibility of Xi’an Jiaotong University.