Skip to main content

Advertisement

Log in

Malleability of gamma rhythms enhances population-level correlations

  • Original Article
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

An important problem in systems neuroscience is to understand how information is communicated among brain regions, and it has been proposed that communication is mediated by neuronal oscillations, such as rhythms in the gamma band. We sought to investigate this idea by using a network model with two components, a source (sending) and a target (receiving) component, both built to resemble local populations in the cerebral cortex. To measure the effectiveness of communication, we used population-level correlations in spike times between the source and target. We found that after correcting for a response time that is independent of initial conditions, spike-time correlations between the source and target are significant, due in large measure to the alignment of firing events in their gamma rhythms. But, we also found that regular oscillations cannot produce the results observed in our model simulations of cortical neurons. Surprisingly, it is the irregularity of gamma rhythms, the absence of internal clocks, together with the malleability of these rhythms and their tendency to align with external pulses — features that are known to be present in gamma rhythms in the real cortex — that produced the results observed. These findings and the mechanistic explanations we offered are our primary results. Our secondary result is a mathematical relationship between correlations and the sizes of the samples used for their calculation. As improving technology enables recording simultaneously from increasing numbers of neurons, this relationship could be useful for interpreting results from experimental recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baddeley, R., Abbott, L. F., Booth, M. C. A., Sengpiel, F., Freeman, T., Wakeman, E. A., and Rolls, E. T. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society of London B, pages 1775–1783.

  • Bastos, A. M., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Battaglia, D., Witt, A., Wolf, F., and Geisel, T. (2012). Dynamic effective connectivity of inter-areal brain circuits. PLOS Computational Biology, 8.

  • Binzegger, T., Douglas, R. J., & Martin, K. (2009). Topology and dynamics of the canonical circuit of cat v1. Neural Networks, 22, 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  • Börgers, C. (2017). An introduction to modeling neuronal dynamics, Chap 30. Springer.

  • Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of Sciences of the United States of America, 102, 7002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Börgers, C., & Kopell, N. J. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15, 509–538.

    Article  PubMed  Google Scholar 

  • Börgers, C., & Kopell, N. J. (2008). Gamma oscillations and stimulus selection. Neural Computation, 20, 383–414.

    Article  PubMed  Google Scholar 

  • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low ring rates. Neural Computation, 11, 1321–1671.

    Article  Google Scholar 

  • Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology, 90, 415–430.

    Article  PubMed  Google Scholar 

  • Burns, S. P., Xing, D., & Shapley, R. M. (2011). Is gamma-band activity in the local field potential of v1 cortex a “clock” or filtered noise? Journal of Neuroscience, 31, 9658–9664.

  • Buzsaki, G. (2011). Rhythms of the brain. Oxford University Press.

  • Cardin, J. A. (2016). Snapshots of the brain in action: Local circuit operations through the lens of \(\gamma\) oscillations. Journal of Neuroscience, 36, 10496–10504.

    Article  CAS  PubMed  Google Scholar 

  • Cardin, J. A., Palmer, L. A., & Contreras, D. (2007). Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. Journal of Neuroscience, 27, 10333–10344.

    Article  CAS  PubMed  Google Scholar 

  • Chariker, L., Shapley, R., & Young, L.-S. (2016). Orientation selectivity from very sparse lgn inputs in a comprehensive model of macaque v1 cortex. The Journal of Neuroscience, 36(49), 12368–12384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariker, L., Shapley, R., & Young, L.-S. (2018). Rhythm and synchrony in a cortical network model. The Journal of Neuroscience, 38(40), 8621–8634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariker, L., Shapley, R., & Young, L.-S. (2020). Contrast response in a comprehensive network model of macaque V1. Journal of Vision, 20(4):16. https://doi.org/10.1167/jov.20.4.16

  • Chariker, L., & Young, L.-S. (2015). Emergent spike patterns in neuronal populations. Journal of Computational Neuroscience, 38, 203–220.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience. MIT Press black.

  • de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., & Reyes, A. D. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.

    Article  PubMed  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. TRENDS in Cognitive Sciences, 9, 10496–10504.

    Article  Google Scholar 

  • Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88, 220–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.

    Article  CAS  PubMed  Google Scholar 

  • Gielen, S., Krupa, M., & Zeitler, M. (2010). Gamma oscillations as a mechanism for selective information transmission. Biological Cybernetics, 103, 151–165.

    Article  PubMed  Google Scholar 

  • Gonzalez-Burgos, G., Cho, R. Y., & Lewis, D. A. (2015). Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biological Psychiatry, 77, 1031–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Burgos, G., Hashimoto, T., & Lewis, D. A. (2010). Alterations of cortical gaba neurons and network oscillations in schizophrenia. Current Psychiatry Reports, 12, 335–344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, C. M., & Singer, W. (1989). Stimulusspecic neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 86, 1698–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grün, S., & Rotter, S. (Eds.). (2010). Analysis of Parallel Spike Trains. Springer.

  • Henrie, J. A., & Shapley, R. (2005). LFP power spectra in V1 cortex: The graded effect of stimulus contrast. Journal of Neurophysiol-ogy, 94, 479–490.

    Article  Google Scholar 

  • Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. The Journal of Physiology, 551(1), 139–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, X., Smith, M. A., & Kohn, A. (2011). Stimulus selectivity and spatial coherence of gamma components of the local field potential. The Journal of Neuroscience, 31, 9390–9403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, X., Tanabe, S., & Kohn, A. (2013). Gamma and the coordination of spiking activity in early visual cortex. Neuron, 77, 762–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. R. Joglekar, L. Chariker, R. Shapley, and L.-S. Young. PLOS Computational Biology, 15, 2019.

  • Kawaguchi, Y., & Kubota, Y. (1997). Gabaergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7, 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press.

  • McCarthy, M. N., Ching, S. N., Whittington, M. A., & Kopell, N. (2012). Dynamical changes in neurological diseases and anesthesia. Current Opinion in Neurobiology, 22, 693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 8087–8092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak, L. G., Munk, M. H., James, A. C., Girard, P., & Bullier, J. (1999). Cross-correlation study of the temporal interactions between areas v1 and v2 of the macaque monkey. Journal of Neurophysiology, 81, 1057–1074.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, L. G., Sanchez-Vives, M. V., & McCormick, D. A. (2008). Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: Cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cerebral Cortex, 18(5), 1058–1078.

    Article  PubMed  Google Scholar 

  • Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, 11, 535–537.

    Article  CAS  PubMed  Google Scholar 

  • Ostojic, S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. Journal of Neurophysiology, pages 361–373.

  • Ostojic, S., Brunel, N., & Hakim, V. (2009). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. Journal of Neuroscience, 29, 10234–10253.

    Article  CAS  PubMed  Google Scholar 

  • Oswald, A.-M. M., & Reyes, A. D. (2011). Development of inhibitory timescales in auditory cortex. Cerebral Cortex, 21, 1351–1361.

    Article  PubMed  Google Scholar 

  • Palmigiano, A., Geisel, T., Wolf, F., & Battaglia, D. (2017). Flexible information routing by transient synchrony. Nature Neuroscience, 20(7), 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  • Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., & Andersen, R. A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5, 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Rangan, A. V., & Young, L.-S. (2013a). Dynamics of spiking neurons: between homogeneity and synchrony. Journal of Computational Neuroscience, 34, 433–460.

    Article  PubMed  Google Scholar 

  • Rangan, A. V., & Young, L.-S. (2013). Emergent dynamics in a model of visual cortex. Journal of Computational Neuroscience, 35, 155–167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., et al. (2010). The asynchronous state in cortical circuits. Science, 327, 587–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception’s shadow: long-distance synchronization of human brain activity. Nature, 391, 430–433.

    Article  Google Scholar 

  • Roe, A. W., & Ts’o, D. Y. (1999). Specificity of color connectivity between primate v1 and v2. Journal of Neurophysiology, 82, 2719–2730.

    Article  CAS  PubMed  Google Scholar 

  • Sederberg, P., Kahana, M., Howard, M., Donner, E., & Madsen, J. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23, 10809–10814.

    Article  CAS  PubMed  Google Scholar 

  • Sincich, L. C., & Horton, J. C. (2005). The circuitry of V1 and V2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–326.

    Article  CAS  PubMed  Google Scholar 

  • Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Current Opinion in Neurobiology, 50, 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Wal, M., & Tiesinga, P. H. (2017). Phase difference between model cortical areas determines level of information transfer. Frontiers in Computational Neuroscience, 11,

  • Tiesinga, P. H., Fellous, J.-M., José, J. V., & Sejnowski, T. J. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus, 11, 251–274.

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 100–113.

    Article  CAS  PubMed  Google Scholar 

  • van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10, 1321–1371.

    Article  PubMed  Google Scholar 

  • Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. The Journal of Neuroscience, 25, 10786–10795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38, 315–336.

    Article  CAS  PubMed  Google Scholar 

  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 5831, 1609–1612.

    Article  Google Scholar 

  • Xing, D., Shen, Y., Burns, S., Yeh, C. I., Shapley, R., & Li, W. (2012). Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. Journal of Neuroscience, 32, 13873–13880.

    Article  CAS  PubMed  Google Scholar 

  • Zandvakili, A., & Kohn, A. (2015). Coordinated neuronal activity enhances corticocortical communication. Neuron, 87, 827–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Wolf Singer for valuable discussions, and Robert Shapley for providing helpful comments on the manuscript. We are grateful also to the reviewers, whose critical comments contributed to improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Sang Young.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Jonathan D Victor and Alain Destexhe.

Action Editor: Jonathan D Victor and Alain Destexhe.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.71 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraf, S., Young, LS. Malleability of gamma rhythms enhances population-level correlations. J Comput Neurosci 49, 189–205 (2021). https://doi.org/10.1007/s10827-021-00779-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00779-4

Keywords

Navigation