Skip to main content
Log in

Facile Hydrothermal Synthesis of Tungsten Tri-oxide/Titanium Di-oxide Nanohybrid Structures as Photocatalyst for Wastewater Treatment Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, tungsten trioxide/titanium dioxide (WO3–TiO2) nanohybrid structures were prepared using a facile hydrothermal method. The nanosheets-like morphology was achieved for the prepared WO3–TiO2 nanohybrid that were confirmed by scanning electron microscopy. Provided X-ray photoelectron spectroscopy results also confirm the element existence and surface composition of the nanohybrid structure. The optical properties of the WO3–TiO2 nanohybrid were verified using UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence spectroscopy. The UV–Vis DRS results indicated that the absorption edge for the WO3–TiO2 nanohybrid found a red shift towards the visible region due to the reduced bandgap (2.83 eV). The photocatalytic activity of the as-prepared WO3–TiO2 nanohybrid was evaluated by the photocatalytic degradation of Orange G dye in wastewaters under visible light. 94% Orange G dye was degraded in 210 min at neutral pH in the presence of WO3–TiO2 nanohybrid, which indicates the enhanced photocatalytic activity. The photo-luminescence technique has also confirmed the formation of –OH radicals during photodegradation by utilizing terephthalic acid as a probe molecule. These results indicate that the prepared nanohybrid material is a simple, low-cost, and efficient photocatalyst for the degradation of pollutants in wastewater treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Anandan and J. J. Wu (2014). Ultrasound-assisted synthesis of TiO2–WO3 heterostructures for the catalytic degradation of Tergitol (NP-9) in water. Ultrason. Sonochem. 21, 1284–1288. https://doi.org/10.1016/j.ultsonch.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  2. A. Anshuman, S. S. Yarahmadi, and B. Vaidhyanathan (2018). Enhanced catalytic performance of reduced graphene oxide–TiO2 hybrids for efficient water treatment using microwave irradiation. RSC Adv. 8, 7709–7715. https://doi.org/10.1039/C8RA00031J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. A. Behnajady, B. Alizade, and N. Modirshahla (2011). Synthesis of Mg-doped TiO2 nanoparticles under different conditions and its photocatalytic activity. J. Photochem. Photobiol. 87, 1308–2131. https://doi.org/10.1111/j.1751-1097.2011.01002.x.

    Article  CAS  Google Scholar 

  4. Y. P. Bhoi, S. R. Pradhan, C. Behera, and B. G. Mishra (2016). Visible light driven efficient photocatalytic degradation of Congo red dye catalyzed by hierarchical CuS-Bi2CuxW1-xO6-2x nanocomposite system. RSC Adv. 6, 35589. https://doi.org/10.1039/C6RA02612E.

    Article  CAS  Google Scholar 

  5. B. Boga, I. Székely, Z. Pap, L. Baia, and M. Baia (2018). Detailed spectroscopic and structural analysis of TiO2/WO3 composite semiconductors. J Spectr. https://doi.org/10.1155/2018/6260458.

    Article  Google Scholar 

  6. D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar (2008). Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B 79, 270–278. https://doi.org/10.1016/j.apcatb.2007.10.033.

    Article  CAS  Google Scholar 

  7. I. A. D. Castro and W. Ribeiro (2014). WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties. CrystEngComm 16, 1514–1524. https://doi.org/10.1039/C3CE41668B.

    Article  Google Scholar 

  8. Z. Chen, J. Zhao, X. Yang, Q. Ye, K. Huang, C. Hou, Z. Zhao, J. You, and Y. Li (2016). Fabrication of TiO2/WO3 composite nanofibers by electrospinning and photocatalystic performance of the resultant fabrics. Ind. Eng. Chem. Res. 55, 80–85. https://doi.org/10.1021/acs.iecr.5b03578.

    Article  CAS  Google Scholar 

  9. P. Fitzpatrick and A. Ibhadon (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts. 3, 189–218. https://doi.org/10.3390/catal3010189.

    Article  CAS  Google Scholar 

  10. U. I. Gaya and A. H. Abdullah (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.

    Article  CAS  Google Scholar 

  11. S. Girish Kumar and L. Gomathi Devi (2011). Reviews on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241. https://doi.org/10.1021/jp204364a.

    Article  CAS  PubMed  Google Scholar 

  12. E. Grabowska, J. W. Sobczak, M. Gazda, and A. Zalesk (2012). Surface properties and visible light activity of W-TiO2 photocatalysts prepared by surface impregnation and sol–gel method. Appl. Catal. B 117–118, 351–359. https://doi.org/10.1016/j.apcatb.2012.02.003.

    Article  CAS  Google Scholar 

  13. S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee (2011). Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787. https://doi.org/10.1039/C0EE00743A.

    Article  CAS  Google Scholar 

  14. W. H. Hu, G. Q. Han, B. Dong, and C. G. Liu (2015). Facile synthesis of highly dispersed WO3⋅H2O and WO3 nanoplates for electrocatalytic hydrogen evolution. J Nanomater. https://doi.org/10.1155/2015/346086.

    Article  Google Scholar 

  15. B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son, and J. H. Park (2018). Solution-processed yolk-shell-shaped WO3/BiVO4 heterojunction photoelectrode for efficient solar water splitting. J. Mater. Chem. A 6, 2585–2592. https://doi.org/10.1039/C7TA08452H.

    Article  CAS  Google Scholar 

  16. S. S. Kalanur, Y. J. Hwang, S. Y. Chae, and O. S. Joo (2013). Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3489. https://doi.org/10.1039/C3TA01175E.

    Article  CAS  Google Scholar 

  17. P. Kanhere and Z. Chen (2014). A review on visible light active perovskite-based photocatalysts. Molecules 19, 19995–20022. https://doi.org/10.3390/molecules191219995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai (2008). Materials Letters, Preparation and photocatalytic activity of WO3/TiO2. nanocomposite particles. Mater. Lett. 62, 447–450. https://doi.org/10.1016/j.matlet.2007.05.060.

    Article  CAS  Google Scholar 

  19. C. W. Lai (2018). WO3-TiO2 nanocomposite and its applications: a review. Nano Hybrids Compos. 20, 1–26.

    Article  Google Scholar 

  20. C. W. Lai and S. Sreekantan (2013). Discovery of WO3/TiO2 nanostructure transformation by controlling content of NH4F to enhance photoelectrochemical response. Adv. Mater. Res. 620, 173–178.

    Article  Google Scholar 

  21. C. W. Lai and S. Sreekantan (2013). Fabrication of WO3 nanostructures by anodization method for visible light driven water splitting and photodegradation of methyl orange. Mater. Sci. Semicond. Process. 16, 303–310. https://doi.org/10.1016/j.mssp.2012.10.007.

    Article  CAS  Google Scholar 

  22. G. Mendoza-Damián, F. Tzompantzi, R. PérezHernández, and A. Hernández-Gordillo (2016). Improved photocatalytic activity of SnO2–ZnAl LDH prepared by one step Sn4+ incorporation. Appl. Clay Sci. 121–122, 127–136. https://doi.org/10.1016/j.clay.2015.12.007.

    Article  CAS  Google Scholar 

  23. Z. D. Mitrovi, S. Stojadinovi, L. Lozzi, S. Aškrabi, M. Rosi, N. Tomi, N. Paunovi, S. Azovi, M. G. Nikoli, and S. Santucci (2016). WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Mater. Res. Bull. 83, 217–224. https://doi.org/10.1016/j.materresbull.2016.06.011.

    Article  CAS  Google Scholar 

  24. D. Nagy, T. Firkala, E. Drotár, Á. Szegedi, K. László, and I. M. Szilágyi (2016). Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2. RSC Adv. 6, 95369–95377. https://doi.org/10.1039/c6ra18899k.

    Article  CAS  Google Scholar 

  25. M. Canle, M.I.F. Perez, and J.A. Santaballa (2017). Photocatalyzed degradation/abatement of endocrine disruptors. Curr Opin Green Sustain Chem. 6, 101–138. https://doi.org/10.1016/j.cogsc.2017.06.008.

    Article  Google Scholar 

  26. K. Nakataa and A. Fujishima (2012). TiO2 photocatalysis: design and applications. J Photochem. Photobiol C 13, 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001.

    Article  CAS  Google Scholar 

  27. M. Y. Nassar, A. A. Ali, and A. S. Amin (2017). A facile Pechini sol–gel synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Adv. 7, 30411–30421. https://doi.org/10.1039/C7RA04899H.

    Article  CAS  Google Scholar 

  28. B. Pal, B. L. Vijayan, S. G. Krishnan, M. Harilal, W. J. Basirun, A. Lowe, M. M. Yusoff, and R. Jose (2018). Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. J. Alloys Compd. 740, 703–710. https://doi.org/10.1016/j.jallcom.2018.01.065.

    Article  CAS  Google Scholar 

  29. C. Palanivel, N. R. Prabhakaran, and G. Selvakumar (2019). Morphological expedient flower-like nanostructures WO3–TiO2 nanocomposite material and its multi applications. Open Nano 4, 100026. https://doi.org/10.1016/j.onano.2018.07.001.

    Article  Google Scholar 

  30. J. Pan, X. Li, Q. Zhao, T. Li, M. Tade, and S. Liu (2015). Construction of MnO.5ZnO.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photoelectrocatalytic performance in the degradation of 2,4-DCP. J. Mater. Chem. C 3, 6025–6034. https://doi.org/10.1039/C5TC01008J.

    Article  CAS  Google Scholar 

  31. N. Pugazhenthiran, S. Murugesan, and S. Anandan (2013). High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium. J. Hazard. Mater. 263, 541–549. https://doi.org/10.1016/j.jhazmat.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  32. A. Rajini, M. Nookaraju, S. Chirra, A. K. Adepu, and N. Venkatathri (2015). Titanium aminophosphates: synthesis, characterization and Orange G dye degradation studies. RSC Adv. 5, 106509–106518. https://doi.org/10.1039/C5RA19117C.

    Article  CAS  Google Scholar 

  33. E. Safaei and S. Mohebbi (2016). Photocatalytic activity of nanohybrid CoTCPP@TiO2/WO3 in aerobic oxidation of alcohols under visible light. J. Mater. Chem. A 4, 3933–3946. https://doi.org/10.1039/C5TA09357K.

    Article  CAS  Google Scholar 

  34. S. M. F. Shaikh, S. S. Kalanur, R. S. Mane, and O. S. Joo (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Trans. 42, 10085–10088. https://doi.org/10.1039/C3DT50728A.

    Article  CAS  PubMed  Google Scholar 

  35. N. Tabatabaei, K. Dashtian, M. Ghaedi, M. M. Sabzehmeidani, and E. Ameri (2018). Novel visible light-driven Cu-based MOFs/Ag2O composite photocatalysts with enhanced photocatalytic activity toward the degradation of orange G: their photocatalytic mechanism and optimization study. New J. Chem. 42, 9720–9734. https://doi.org/10.1039/C7NJ03245E.

    Article  CAS  Google Scholar 

  36. W. Wang, M. O. Tadé, and Z. Shao (2015). Research progress of perovskite materials in photocatalysis and photovoltaics related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408. https://doi.org/10.1039/c5cs00113g.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Wang, R. Priambodo, and H. Zhang (2015). Huang degradation of Azo Dye Orange G in fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst. RSC Adv. 5, 45276–45283. https://doi.org/10.1039/c5ra04238k.

    Article  CAS  Google Scholar 

  38. C. L. Hsueh, Y. H. Huang, C. C. Wang, and C. Y. Chen (2006). Photooxidation of Azo Dye Reactive Black 5 Using a Novel-Supported Iron Oxide: Heterogeneous and Homogeneous Approach. Water Sci Technol. 53, 195–201. https://doi.org/10.2166/wst.2006.197.

    Article  CAS  PubMed  Google Scholar 

  39. J. Zhang and Y. Nosaka (2013). Quantitative detection of OH radicals for investigating the reaction mechanism of various visible- light TiO2 photocatalysts in aqueous suspension. J. Phys. Chem. C 117, 1383–1391. https://doi.org/10.1021/jp3105166.

    Article  CAS  Google Scholar 

  40. J. Zhang, M. Chen, and L. Zhu (2016). Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Adv. 6, 758–768. https://doi.org/10.1039/C5RA22457H.

    Article  CAS  Google Scholar 

  41. J. Zhu, Y. Koltypin, and A. Gedanken (2000). General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles. Chem. Mater. 12, 73–78. https://doi.org/10.1021/cm990380r.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology, India sponsored this research under the Water Technology Initiative scheme (Grant No. DST/TM/WTI/2K16/258). The author (Najat Marraiki) extends their appreciation to The Researchers Supporting Project number (Grant No. RSP-2020/201) King Saud University, Saudi Arabia. This research work was supported financially by the Grant MOST107-2113-M-037-007-MY2 from Ministry of Science and Technology, Taiwan and also supported by the Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan from“The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project” by the Ministry of Education (MOE) in Taiwan. The authors gratefully acknowledge the use of SEM, XRD equipment provided by the Instrument Center of National Cheng Kung University, Tainan, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are equally contributed substantially to the work reported.

Corresponding authors

Correspondence to Vinoth Kumar Ponnusamy or Sambandam Anandan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, U.O., Kumar, K.R., Syed, A. et al. Facile Hydrothermal Synthesis of Tungsten Tri-oxide/Titanium Di-oxide Nanohybrid Structures as Photocatalyst for Wastewater Treatment Application. J Clust Sci 33, 1327–1336 (2022). https://doi.org/10.1007/s10876-021-02053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02053-0

Keywords

Navigation