Skip to main content
Log in

High-Quality Etching of GaN Materials with Extremely Slow Rate and Low Damage

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

High-quality gallium nitride etching is highly desirable in electronic device fabrications. For the GaN base devices, the electronic properties largely depended on the etching induced surface damages. To overcome this, a controllable GaN etching method was developed using inductively coupled plasma reactive ion etching (ICP-RIE) by controlling radio frequency (RF) power, and DC bias. The etching rate, DC bias, and root-mean-square surface roughness were measured as a function of bias power under different RF, 40 and 13.56 MHz. The effects of ICP power and chlorine to argon percentage were systematically studied. An extremely slow etching rate and low-damage surface were achieved by reducing DC bias power to 25 W under RF 40 MHz. Ni|Au Schottky diodes were fabricated and characterized. The diode fabricated on the 40-MHz RF etching GaN surface has a much lower ideality factor and higher barrier height than non-etched GaN and RF 13.56 MHz etching GaN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. J. Wierer, A. David, and M. M. Megens, Nat. Photon. 3, 163 (2009).

    Article  ADS  Google Scholar 

  2. T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, and S. Sakai, J. Cryst. Growth 235, 177 (2002).

    Article  ADS  Google Scholar 

  3. T. Detchprohm, M. Zhu, Y. Li, L. Zhao, S. You, C. Wetzel, E. A. Preble, T. Paskova, and D. Hanser, Appl. Phys. Lett. 96, 051101 (2010).

    Article  ADS  Google Scholar 

  4. D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, IEEE Microwave Mag. 14, 82 (2013).

    Article  Google Scholar 

  5. Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, IEEE Trans. Electron Dev. 48, 586 (2001).

    Article  ADS  Google Scholar 

  6. T. Lenka and A. Panda, Semiconductors 45, 650 (2011).

    Article  ADS  Google Scholar 

  7. G. F. McLane, L. Casas, S. J. Pearton, and C. R. Abernathy, Appl. Phys. Lett. 66, 3328 (1995).

    Article  ADS  Google Scholar 

  8. J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, J. Appl. Phys. 87, 7667 (2000).

    Article  ADS  Google Scholar 

  9. C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, Mater. Sci. Eng. B 107, 283 (2004).

    Article  Google Scholar 

  10. R. J. Shul, G. B. Mcclellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, Appl. Phys. Lett. 69, 1119 (1996).

    Article  ADS  Google Scholar 

  11. L.-S. Li,  X. Xu,  F. Liu,  Q.-H. Zhou, Z.-F. Nie, Y.-Z. Liang, and R.-Q. Liang, Chin. Phys. Lett. 25, 2144 (2008).

    Article  ADS  Google Scholar 

  12. B. Kim and B. T. Lee, IEEE Trans. Plasma Sci. 30, 2074 (2002).

    Article  ADS  Google Scholar 

  13. Y. Sun, X. Kang, Y. Zheng, K. Wei, P. Li, W. Wang, X. Liu, and G. Zhang, Nanomaterials 10, 657 (2020).

    Article  Google Scholar 

  14. S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu, and M. Micovic, Phys. Status Solidi C 7, 2010 (2010).

    Article  ADS  Google Scholar 

  15. Y. Jiang, Z.-Y. Wan, G.-N. Zhou, M.-Y. Fan, G.-Y. Yang, R. Sokolovskij, G.-R. Xia, Q. Wang, and H.-Y. Yu, Chin. Phys. Lett. 37, 68503 (2020).

    Article  Google Scholar 

  16. E. D. Haberer, C.-H. Chen, A. Abare, M. Hansen, S. P. Den Baars, L. A. Coldren, U. K. Mishra, and E. L. Hu, Appl. Phys. Lett. 76, 3941 (2000).

    Article  ADS  Google Scholar 

  17. A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, J. Electron. Mater. 27, 261 (1998).

    Article  ADS  Google Scholar 

  18. S. J. Pearton, E. A. Douglas, R. J. Shul, and F. Ren, J. Vac. Sci. Technol. A 38, 020802 (2020).

    Article  Google Scholar 

  19. Q. Fan, S. Chevtchenko, X. Ni, S.-J. Cho, F. Yun, and H. Morkoç, J. Vac. Sci. Technol. B 24, 1197 (2006).

    Article  Google Scholar 

  20. F. A. Khan, L. Zhou, V. Kumar, and I. Adesida, J. Vac. Sci. Technol. B 19, 2926 (2001).

    Article  Google Scholar 

  21. S. Yamada, M. Omori, H. Sakurai, Y. Osada, R. Kamimura, T. Hashizume, J. Suda, and T. Kachi, Appl. Phys. Express 13, 016505 (2020).

    Article  ADS  Google Scholar 

  22. M. J. Cooke and G. Hassall, Plasma Sources Sci. Technol. 11, A74 (2002).

    Article  ADS  Google Scholar 

  23. S. Zhou, B. Cao, and S. Liu, Appl. Surf. Sci. 257, 905 (2010).

    Article  ADS  Google Scholar 

  24. T. T. Wang, X. Wang,  X.-B. Li,  J.-C. Zhang, and J.-P. Ao, Chin. Phys. Lett. 36, 057101 (2019).

    Article  ADS  Google Scholar 

  25. C. Cheng and J. Si, Phys. B (Amsterdam, Neth.) 406, 3098 (2011).

Download references

Funding

This work was supported by Changchun University of Science and Technology under grant nos. 6141B010328 and XJJLG201510. It was accomplished in Nano Fabrication Facility of Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-L. Yan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XM., Yan, CL., Yu, GH. et al. High-Quality Etching of GaN Materials with Extremely Slow Rate and Low Damage. Semiconductors 55, 387–393 (2021). https://doi.org/10.1134/S1063782621030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621030180

Keywords:

Navigation