Skip to main content
Log in

Features of Electron Transport in Two-Dimensional Quantum Superlattices with the Non-Associative Dispersion Law

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The anisotropy of the conductivity and the shape of the IV characteristics for a two-dimensional quantum superlattice with the nonharmonic electron dispersion law are investigated for different directions of the current and field applied to the structure relative to the superlattice axes. The anisotropy of the characteristics and the conditions for the occurrence of multivalue IV characteristics in different current flow modes are discussed. It is shown that the deviation of the electron dispersion law in a two-dimensional quantum superlattice from the harmonic one in a strong dc electric field noticeably affects the shape of the IV characteristic of a two-dimensional quantum superlattice. Several current peaks in a strong field are caused by both mixing of the current lines for directions orthogonal to the applied field and electron transport over Stark-ladder levels formed in different miniband valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Romanov and E. V. Demidov, Semiconductors 31, 252 (1997).

    Article  ADS  Google Scholar 

  2. I. A. Dmitriev and R. A. Suris, Semiconductors 35, 212 (2001).

    Article  ADS  Google Scholar 

  3. L. K. Orlov, V. I. Vdovin, N. L. Ivina, Phys. Solid State 61, 1263 (2019).

    Article  ADS  Google Scholar 

  4. J. Y. Fan, X. L. Wu, and P. K. Chu, Progr. Mater. Sci. 51, 983 (2006).

    Article  Google Scholar 

  5. V. I. Sankin and A. A. Lepneva, Semiconductors 34, 803 (2000).

    Article  ADS  Google Scholar 

  6. C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Koler, Phys. Rev. Lett. 70, 3319 (1993).

    Article  ADS  Google Scholar 

  7. E. Schomburg, R. Scheuerer, S. Brandl, K. F. Renk, D. Pavel’ev, Yu. Kochurinov, V. Ustinov, A. Zhukov, A. Kovsh, and P. S. Kop’ev, Electron. Lett. 35, 1491 (1999).

    Article  ADS  Google Scholar 

  8. Yu. A. Romanov, L. G. Mourokh, and N. J. M. Horing, J. Appl. Phys. 93, 4696 (2003).

    Article  ADS  Google Scholar 

  9. I. A. Dmitriev and R. A. Suris, Semiconductors 36, 1364 (2002).

    Article  ADS  Google Scholar 

  10. S. Yu. Glazov and S. V. Kryuchkov, Semiconductors 35, 444 (2001).

    Article  ADS  Google Scholar 

  11. L. K. Orlov, Izv. Vyssh. Uchebn. Zaved. SSSR, Radiofiz. 32, 1550 (1989).

    Google Scholar 

  12. M. L. Orlov, Yu. A. Romanov, and L. K. Orlov, Microelectron. J. 36, 396 (2005).

    Article  Google Scholar 

  13. M. L. Orlov, Yu. A. Romanov, and L. K. Orlov, in Proceedings of the 1st International Workshop on Semiconductor Nanocrystals (Budapest, Hungary, 2005), Vol. 2, p. 325.

  14. L. K. Orlov and Yu. A. Romanov, Sov. Phys. Semicond. 19, 1157 (1985).

    Google Scholar 

  15. L. K. Orlov, Radiotekh. Elektron. 33, 1278 (1988).

    ADS  Google Scholar 

  16. O. A. Mironov, O. A. Kuznetsov, L. K. Orlov, R. A. Rubtsova, A. L. Chernov, S. V. Chistyakov, M. Oszwaldovskii, B. A. Aronzon, and N. K. Chumakov, Superlatt. Microstruct. 10, 467 (1991).

    Article  ADS  Google Scholar 

  17. L. K. Orlov and Yu. A. Romanov, Izv. Vyssh. Uchebn. Zaved. SSSR, Radiofiz. 32, 282 (1989).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is devoted to the memory of Prof. Yu.A. Romanov, who initiated the formulation of the problem and the beginning of its solution.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-42-520062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Orlov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, M.L., Orlov, L.K. Features of Electron Transport in Two-Dimensional Quantum Superlattices with the Non-Associative Dispersion Law. Semiconductors 55, 319–327 (2021). https://doi.org/10.1134/S1063782621030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621030143

Keywords:

Navigation