Skip to main content
Log in

Effective High-Precision Analysis of Thin Asymmetric Inductive Diaphragm in Rectangular Waveguide Using Integral Equation Method

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This paper proposes a solution of the electrodynamic problem of determining the generalized scattering matrix of infinitely thin asymmetric one-sided inductive diaphragm in rectangular waveguide using the integral equation method. The problem is reduced to solving the system of integral equations in terms of the number of incident modes falling on the inhomogeneity from the left partial region. The efficiency of the new solution of electrodynamic problem is achieved owing to the correct way of taking into account the singularity of tangential electric field in the diaphragm aperture using the Gegenbauer polynomials. The Galerkin method is used to reduce each integral equation to the system of linear algebraic equations in complex coefficients of the expansion of tangential electric field in the diaphragm window. Numerical investigation of the obtained solution was conducted for determining the equivalent parameters of diaphragm in the frequency band where only the principal mode can propagate along the waveguide without attenuation. The possibility of effective high-accuracy calculation of the generalized scattering matrix of infinitely thin asymmetric inductive diaphragm in rectangular waveguide with due regard for singularity of tangential electric field at the sharp ridge in the diaphragm window has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. O. O. Drobakhin, S. V. Plaksin, V. D. Ryabchii, D. Y. Saltykov, Microwave Technology and Semiconductor Electronics (Veber, Sevastopol, 2013).

    Google Scholar 

  2. V. A. Neganov, D. P. Klyuev, D. P. Tabakov, "Part 1: Designing, Implementation, and Examples of Microwave Device Applications," in Microwave Devices and Antennas (Librokom, Moscow, 2013).

    Google Scholar 

  3. J. A. Ruiz-Cruz, J. R. Montejo-Garai, J. M. Rebollar, "Computer aided design of waveguide devices by mode-matching methods," in Passive Microwave Components and Antennas (InTech, Vuko-var, 2010). DOI: https://doi.org/10.5772/9403.

    Chapter  Google Scholar 

  4. Y. D. Chernousov, V. I. Ivannikov, I. V. Shebolaev, A. E. Levichev, V. M. Pavlov, "Bandpass characteristics of coupled resonators," J. Commun. Technol. Electron., v.55, n.8, p.863 (2010). DOI: https://doi.org/10.1134/S1064226910080036.

    Article  Google Scholar 

  5. S. Choocadee, S. Akatimagool, "The simulation, design and implementation of bandpass filters in rectangular waveguides," Electr. Electron. Eng., v.2, n.3, p.152 (2012). DOI: https://doi.org/10.5923/j.eee.20120203.08.

    Article  Google Scholar 

  6. Y. D. Chernousov, A. E. Levichev, V. M. Pavlov, G. K. Shamuilov, "Thin diaphragm in the rectangular waveguide," Vestn. NGU. Seriya Fiz., v.6, n.1, p.44 (2011).

    Google Scholar 

  7. M. V. Mishchenko, A. Y. Farafonov, D. A. Kovalenko, Y. A. Sitsilitsin, "Synthesis method of tolerance deviations to the geometrical parameter of the microstrip devices," Radio Electron. Comput. Sci. Control, n.2, p.21 (2014). DOI: https://doi.org/10.15588/1607-3274-2013-2-3.

    Article  Google Scholar 

  8. H. Yan, X. Wu, J. Yang, "Application of Monte Carlo method in tolerance analysis," Procedia CIRP, v.27, p.281 (2015). DOI: https://doi.org/10.1016/j.procir.2015.04.079.

    Article  Google Scholar 

  9. G. F. Zargano, A. M. Lerer, V. P. Lyapin, G. P. Sinyavskii, Transmission Lines with Complex Cross Sections (Izd. Rostovskogo Universiteta, Rostov, 1983).

    Google Scholar 

  10. D. B. Mamedov, A. G. Yushchenko, "Research of scattering matrix method convergence in the computation problem of quasi-h mode microwave filters," Eastern-European J. Enterp. Technol., v.4, n.9(76), p.34 (2015). DOI: https://doi.org/10.15587/1729-4061.2015.47992.

    Article  Google Scholar 

  11. O. S. Zakharchenko, S. Y. Martynyuk, P. Y. Stepanenko, "Generalized mathematical model of thin asymmetric inductive diaphragm in rectangular waveguide," Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, n.72, p.13 (2018). DOI: https://doi.org/10.20535/RADAP.2018.72.13-22.

    Article  Google Scholar 

  12. S. O. Steshenko, S. A. Prikolotin, A. A. Kirilenko, D. Y. Kulik, L. A. Rud’, S. L. Senkevich, "Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries: Part 2. Plane-transverse junctions and “in-line” objects," Telecommun. Radio Eng., v.73, n.3, p.187 (2014). DOI: https://doi.org/10.1615/TelecomRadEng.v73.i3.10.

    Article  Google Scholar 

  13. V. V. Nikolskii, T. I. Nikolskaya, Electrodynamics and Wave Propagation (Librokom, Moscow, 2015).

    Google Scholar 

  14. V. F. Kravchenko, O. S. Labunko, A. M. Lerer, G. P. Sinyavskii, Computational Methods in Modern Radiophysics (Fizmatlit, Moscow, 2009).

    Google Scholar 

  15. I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products (BKhV-Peterburg, St. Petersburg, 2011).

    Google Scholar 

  16. N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical Methods (Binom, Moscow, 2008).

    Google Scholar 

  17. F. F. Dubrovka, Y. A. Ovsianyk, P. Y. Stepanenko, O. S. Zakharchenko, "Wideband matching the dual frequency coaxial waveguide feed," Inf. Telecommun. Sci., v.3, n.2, p.53 (2012). URI: http://infotelesc.kpi.ua/article/view/30217.

    Google Scholar 

  18. F. F. Dubrovka, S. I. Piltyay, "Eigenmodes of sectoral coaxial ridged waveguides," Radioelectron. Commun. Syst., v.55, n.6, p.239 (2012). DOI: https://doi.org/10.3103/S0735272712060015.

    Article  Google Scholar 

  19. F. F. Dubrovka, S. I. Piltyay, "Electrodynamics boundary problem solution for sectoral coaxial ridged waveguides by integral equation technique," Radioelectron. Commun. Syst., v.55, n.5, p.191 (2012). DOI: https://doi.org/10.3103/S0735272712050019.

    Article  Google Scholar 

  20. F. F. Dubrovka, S. I. Piltyay, "Eigenmodes of coaxial quad-ridged waveguides. Theory," Radioelectron. Commun. Syst., v.57, n.1, p.1 (2014). DOI: https://doi.org/10.3103/S0735272714010014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ye. Martyniuk.

Ethics declarations

ADDITIONAL INFORMATION

S. Ye. Martyniuk, F. F. Dubrovka, O. S. Zakharchenko, and P. Ya. Stepanenko

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021020035 with DOI: https://doi.org/10.20535/S0021347021020035

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyniuk, S.Y., Dubrovka, F.F., Zakharchenko, O.S. et al. Effective High-Precision Analysis of Thin Asymmetric Inductive Diaphragm in Rectangular Waveguide Using Integral Equation Method. Radioelectron.Commun.Syst. 64, 80–91 (2021). https://doi.org/10.3103/S0735272721020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721020035

Navigation