Skip to main content
Log in

Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al2O3 for optoelectronics. A systematic analysis of the FAGPTi film on various substrates reveals that the FAGPTi films fully covered all parts of the substrate, showing low roughness, high hydrophobicity, and good flexibility. These results demonstrate that FAGPTi is able to protect water corrosive Al2O3 from the outer invasion of moisture or water. Therefore, the TFE with alternatively stacked Al2O3 and FAGPTi shows excellent barrier film performance as low as 6.33 × 10−5g m−2 day−1s at accelerated conditions (60 °C and 90% RH) and high visible transmittance above 95% in four pairs. In particular, the FAGPTi films displayed advanced side impermeability, with values comparable to those of the oxide layer. Thus, we expect our systematic work with FAGPTi layers to provide insights into barrier films to advance their integration in flexible optoelectronic devices and thereby accelerate their commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Conaghan, C. S. B. Matthews, F. Chotard, S. T. E. Jones, N. C. Greenham, M. Bochmann, D. Credgington, and A. S. Romanov, Nat. Commun., 11, 1758 (2020).

    Article  CAS  Google Scholar 

  2. S. Choi, C.-M. Kang, C.-W. Byun, H. Cho, B.-H. Kwon, J.-H. Han, J.-H. Yang, J.-W. Shin, C.-S. Hwang, N. S. Cho, K. M. Lee, H.-O. Kim, E. Kim, S. Yoo, and H. Lee, Nat. Commun., 11, 2732 (2020).

    Article  CAS  Google Scholar 

  3. A. Salehi, C. Dong, D.-H. Shin, L. Zhu, C. Papa, A. Thy Bui, F. N. Castellano, and F. So, Nat. Commun., 10, 2305 (2019).

    Article  Google Scholar 

  4. C. Lian, M. Piksa, K. Yoshida, S. Persheyev, K. J. Pawlik, K. Matczyszyn, and I. D. W. Samuel, npj Flex. Electron., 3, 18 (2019).

    Article  Google Scholar 

  5. S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J.-J. Park, and C. E. Park, J. Mater. Chem., 22, 7731 (2012).

    Article  CAS  Google Scholar 

  6. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686 (2008).

    Article  Google Scholar 

  7. M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, Adv. Funct. Mater., 11, 116 (2001).

    Article  CAS  Google Scholar 

  8. K. Teshima, H. Sugimura, Y. Inoue, and O. Takai, Langmuir, 19, 8331 (2003).

    Article  CAS  Google Scholar 

  9. D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, and Y.-F. Liu, Opt. Commun., 362, 43 (2016).

    Article  CAS  Google Scholar 

  10. Y. C. Han, E. G. Jeong, H. Kim, S. Kwon, H.-G. Im, B.-S. Bae, and K. C. Choi, RSC Adv., 6, 40835 (2016).

    Article  CAS  Google Scholar 

  11. A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, Appl. Phys. Lett., 83, 413 (2003).

    Article  CAS  Google Scholar 

  12. H. Chatham, Surf. Coat. Technol., 78, 1 (1996).

    Article  CAS  Google Scholar 

  13. M. Vähä-Nissi, P. Sundberg, E. Kauppi, T. Hirvikorpi, J. Sievänen, A. Sood, M. Karppinen, and A. Harlin, Thin Solid Films, 520, 6780 (2012).

    Article  Google Scholar 

  14. K. H. Yoon, H. S. Kim, K. S. Han, S. H. Kim, Y.-E. K. Lee, N. K. Shrestha, S. Y. Song, and M. M. Sung, ACS Appl. Mater. Interfaces, 9, 5399 (2017).

    Article  CAS  Google Scholar 

  15. P. van de Weijer, H. B. Akkerman, P. C. P. Bouten, P. Panditha, P. J. M. Klaassen, and A. Salem, Org. Electron., 53, 256 (2018).

    Article  Google Scholar 

  16. N. Kim, X. Li, S. H. Kim, and J. Kim, J. Ind. Eng. Chem., 68, 209 (2018).

    Article  CAS  Google Scholar 

  17. J. H. Jang, N. Kim, X. Li, T. K. An, J. Kim, and S. H. Kim, Appl. Surf. Sci., 475, 926 (2019).

    Article  CAS  Google Scholar 

  18. D. Yoo, Y. Kim, M. Min, G. H. Ahn, D.-H. Lien, J. Jang, H. Jeong, Y. Song, S. Chung, A. Javey, and T. Lee, ACS Nano, 12, 11062 (2018).

    Article  CAS  Google Scholar 

  19. S. Wang, Y. Wang, Y. Zou, G. Chen, J. Ouyang, D. Jia, and Y. Zhou, ACS Appl. Mater. Interfaces, 12, 35502 (2020).

    Article  CAS  Google Scholar 

  20. H.-J. Kwon, H. Ye, Y. Baek, J. Hong, R. Wang, Y. Choi, I. Lee, C. E. Park, S. Nam, J. Kim, and S. H. Kim, Adv. Funct. Mater., 31, 2009539 (2021).

    Article  CAS  Google Scholar 

  21. X. Tang, H.-J. Kwon, J. Hong, H. Ye, R. Wang, D.-J. Yun, C. E. Park, Y. J. Jeong, H. S. Lee, and S. H. Kim, ACS Appl. Mater. Interfaces, 12, 33999 (2020).

    Article  CAS  Google Scholar 

  22. S. Ma, W. Qiao, T. Cheng, B. Zhang, J. Yao, A. Alsaedi, T. Hayat, Y. Ding, Z. A. Tan, and S. Dai, ACS Appl. Mater. Interfaces, 10, 3902 (2018).

    Article  CAS  Google Scholar 

  23. M. H. Boratto, M. Congiu, S. B. O. dos Santos, and L. V. A. Scalvi, Ceram. Int., 44, 10790 (2018).

    Article  CAS  Google Scholar 

  24. M. Strauss, C. M. Maroneze, J. M. de Souza e Silva, F. A. Sigoli, Y. Gushikem, and I. O. Mazali, Mater. Chem. Phys., 126, 188 (2011).

    Article  CAS  Google Scholar 

  25. J. Ma, W.-J. Lee, J. M. Bae, K. Jeong, S. Oh, J.-H. Kim, S.-H. Kim, J.-H. Seo, J.-P. Ahn, H. Kim, and M.-H. Cho, Nano Lett., 15 (2015).

  26. L. Sun, C. Han, N. Wu, B. Wang, and Y. Wang, RSC Adv., 8, 13697 (2018).

    Article  CAS  Google Scholar 

  27. N. Li, Z. Wu, X. Yang, C. Wang, L. Zong, Y. Pan, J. Wang, and X. Jian, J. Mater. Sci., 53, 16303 (2018).

    Article  CAS  Google Scholar 

  28. Y. Suganuma, T. Mitsuoka, S. Yamamoto, T. Kinjo, H. Yoneyama, and K. Umemoto, J. Phys. Chem. B, 123, 4434 (2019).

    CAS  PubMed  Google Scholar 

  29. S. Zheng and J. Li, J. Sol Gel Sci. Technol., 54, 174 (2010).

    Article  CAS  Google Scholar 

  30. M. L. Zheludkevich, I. M. Salvado, and M. G. S. Ferreira, J. Mater. Chem., 15, 5099 (2005).

    Article  CAS  Google Scholar 

  31. L. Kim, K. Kim, S. Park, Y. Jeong, H. Kim, D. Chung, S. Kim, and C. Park, ACS Appl. Mater. Interfaces, 6 (2014).

  32. J. Zhu and J. He, ACS Appl. Mater. Interfaces, 4, 1770 (2012).

    Article  CAS  Google Scholar 

  33. X. F. Yang, D. E. Tallman, V. J. Gelling, G. P. Bierwagen, L. S. Kasten, and J. Berg, Surf. Coat. Technol., 140, 44 (2001).

    Article  CAS  Google Scholar 

  34. L. H. Kim, Y. J. Jeong, T. K. An, S. Park, J. H. Jang, S. Nam, J. Jang, S. H. Kim, and C. E. Park, Phys. Chem. Chem. Phys., 18, 1042 (2016).

    Article  CAS  Google Scholar 

  35. S. Feng-Bo, D. Yu, Y. Yong-Qiang, C. Ping, D. Ya-Hui, W. Xiao, Y. Dan, and X. Kai-wen, Org. Electron., 15, 2546 (2014).

    Article  Google Scholar 

  36. P. Boldrighini, A. Fauveau, S. Thérias, J. L. Gardette, M. Hidalgo, and S. Cros, Rev. Sci. Instrum., 90, 014710 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Materials & Components Technology Development Program (20006537, Development of High-Performance Insulation Materials for Flexible OLED Display TFT) and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (No. 20204010600100) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) for SHK. This work was supported by the 2020 Research Fund of the University of Seoul for Hong Chul Moon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Chul Moon, Juyoung Kim or Se Hyun Kim.

Additional information

The image from this article is used as the cover image of the Volume 29, Issue 4.

Supporting information

Information is available regarding the chemcal structure of AFAP, contact angle and surface energy, XPS data, stretchable characteristics, transmittance and TGA data of hybrid materials. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Hj., Hong, J., Le, H.N. et al. Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation. Macromol. Res. 29, 313–320 (2021). https://doi.org/10.1007/s13233-021-9035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9035-2

Keywords

Navigation