Skip to main content

Advertisement

Log in

Error elimination method in moving target tracking in real-time augmented reality

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper proposes an augmented reality interactive method based on improved Kinect sensor commands to eliminate the tracking error of moving targets. Designed posture tracking architecture. Experiments show that the above two types of algorithms can meet the needs of the project and have certain light resistance. Among them, the algorithm based on feature points has certain advantages in speed and requires fewer manual processing steps. In this case, it is necessary to combine the previous algorithm to solve the posture, use the optical flow method to track the feature points, avoid the operation of extracting, matching, and removing the mismatch of each frame of feature points, and improve the speed of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang, X., Guo, J., Xue, T., et al.: Robust and real-time pose tracking for augmented reality on mobile devices. Multimedia Tools Appl. 77(6), 6607–6628 (2018)

    Article  Google Scholar 

  2. Kalia, M., Mathur, P., Navab, N., et al.: Marker-less real-time intra-operative camera and hand-eye calibration procedure for surgical augmented reality. Healthc. Technol. Lett. 6(6), 255–260 (2019)

    Article  Google Scholar 

  3. Kasapakis, V., Gavalas, D.: Occlusion handling in outdoors augmented reality games. Multimedia Tools Appl. 76(7), 9829–9854 (2017)

    Article  Google Scholar 

  4. Wang, Y., Zhang, S., Wan, B., et al.: Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system. Int. J. Adv. Manuf. Technol. 99(9–12), 2341–2352 (2018)

    Article  Google Scholar 

  5. Tumurbaatar, T., Kim, T.: Development of real-time object motion estimation from single camera. Spat. Inf. Res. 25(5), 647–656 (2017)

    Article  Google Scholar 

  6. Wang, R., Zhang, M., Meng, X., et al.: 3-D Tracking for augmented reality using combined region and dense cues in endoscopic surgery. IEEE J. Biomed. Health Inf. 22(5), 1540–1551 (2017)

    Article  Google Scholar 

  7. Ma, L., Jiang, W., Zhang, B., et al.: Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement. Med. Biol. Eng. Comput. 57(1), 47–57 (2019)

    Article  Google Scholar 

  8. Lee, A., Jang, I.: Robust multithreaded object tracker through occlusions for spatial augmented reality. ETRI J. 40(2), 246–256 (2018)

    Article  Google Scholar 

  9. Jian, H., Liao, J., Fan, X., et al.: Augmented virtual environment: fusion of real-time video and 3D models in the digital earth system. Int. J. Dig. Earth 10(12), 1177–1196 (2017)

    Article  Google Scholar 

  10. Pei, C., Zhang, J., Wang, X., et al.: Research of a non-linearity control algorithm for UAV target tracking based on fuzzy logic systems. Microsyst. Technol. 24(5), 2237–2252 (2018)

    Article  Google Scholar 

  11. Jinyu, L., Bangbang, Y., Danpeng, C., et al.: Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality. Virtual Real. Intell. Hardw. 1(4), 386–410 (2019)

    Article  Google Scholar 

  12. Zhang, J., Kaess, M., Singh, S.: A real-time method for depth enhanced visual odometry. Auton. Robots 41(1), 31–43 (2017)

    Article  Google Scholar 

  13. Qiu, K., Qin, T., Gao, W., et al.: Tracking 3-D motion of dynamic objects using monocular visual-inertial sensing. IEEE Trans. Rob. 35(4), 799–816 (2019)

    Article  Google Scholar 

  14. Ren, C.Y., Prisacariu, V.A., Kähler, O., et al.: Real-time tracking of single and multiple objects from depth-colour imagery using 3d signed distance functions. Int. J. Comput. Vision 124(1), 80–95 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wang, Y., Zhang, S., Yang, S., et al.: A LINE-MOD-based markerless tracking approach for AR applications. Int. J. Adv. Manuf. Technol. 89(5–8), 1699–1707 (2017)

    Article  Google Scholar 

  16. Davies, R., Wilson, I., Ware, A.: Stereoscopic human detection in a natural environment. Ann. Emerg. Technol. Comput. 2(2), 15–23 (2018)

    Article  Google Scholar 

  17. Meola, A., Cutolo, F., Carbone, M., et al.: Augmented reality in neurosurgery: a systematic review. Neurosurg. Rev. 40(4), 537–548 (2017)

    Article  Google Scholar 

  18. Tiwari, V., Tiwari, V.P., Chudasama, D., et al.: Augmented reality and its technologies. Int. Res J. Eng. Technol. 3(4), 1416–1420 (2016)

    Google Scholar 

  19. Shin, D., Kim, C., Koo, G., et al.: Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality. Opt. Express 28(4), 5602–5616 (2020)

    Article  Google Scholar 

  20. Schreurs, R., Dubois, L., Becking, A.G., et al.: Implant-oriented navigation in orbital reconstruction. Part 1: technique and accuracy study. Int. J. Oral Maxillofac. Surg. 47(3), 395–402 (2018)

    Article  Google Scholar 

  21. Lee, S.C., Fuerst, B., Fotouhi, J., et al.: Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization. Int. J. Comput. Assist. Radiol. Surg. 11(6), 967–975 (2016)

    Article  Google Scholar 

  22. Jiang, X., Xiao, Z., Zhang, B., et al.: ASiam: adaptive Siamese regression tracking with adversarial template generation and motion-based failure recovery. IET Image Proc. 13(14), 2694–2705 (2019)

    Article  Google Scholar 

  23. Chen, E.C.S., Morgan, I., Jayarathne, U., et al.: Hand–eye calibration using a target registration error model. Healthc. Technol. Lett. 4(5), 157–162 (2017)

    Article  Google Scholar 

  24. Lincoln, P., Blate, A., Singh, M., et al.: From motion to photons in 80 microseconds: towards minimal latency for virtual and augmented reality. IEEE Trans. Visual Comput. Graph. 22(4), 1367–1376 (2016)

    Article  Google Scholar 

  25. Taylor, C.R., Abramson, H.G., Herr, H.M.: Low-latency tracking of multiple permanent magnets. IEEE Sens. J. 19(23), 11458–11468 (2019)

    Article  Google Scholar 

  26. Chen, M.C., Lu, S.Q., Liu, Q.L.: Uniform regularity for a Keller–Segel–Navier–Stokes system. Appl. Math. Lett. 107, 106476 (2020)

    Article  MathSciNet  Google Scholar 

  27. Han, P., Zhao, G.: A review of edge-based 3D tracking of rigid objects. Virtual Real. Intell. Hardw. 1(6), 580–596 (2019)

    Article  Google Scholar 

  28. Bazargani, H., Bilaniuk, O., Laganiere, R.: A fast and robust homography scheme for real-time planar target detection. J. Real Time Image Process. 15(4), 739–758 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhao, Z. Error elimination method in moving target tracking in real-time augmented reality. J Real-Time Image Proc 18, 295–305 (2021). https://doi.org/10.1007/s11554-020-01047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01047-x

Keywords

Navigation