Skip to main content
Log in

Preparation and Characterization of Hybrids of Cellulose Acetate Membranes Blended with Polysulfone and Embedded with Silica for Copper(II), Iron(II) and Zinc(II) Removal from Contaminated Solutions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

With the objective to assess the suitability of cellulose acetate (CA), polysulfone (PSF) and silica (SiO2) for wastewater treatment, this work presents the results of preparation and characterization of PSF blended CA hybrid filtration membranes (CA/PSF) as well as PSF blended and SiO2 embedded CA hybrid adsorption membranes (CA/PSF-SiO2) for copper(II), iron(II) and zinc(II) ions removal from contaminated aqueous solutions. The membranes were prepared by phase inversion, using granules of CA, PSF and SiO2 dissolved in N, N dimethyl formamide (DMF). From the scanning electron microscopy (SEM) used to determine the morphology of the membranes, different pore sizes are seen at their rough surfaces and cross sections. The porosity and pore sizes of the membranes, determined by differentiation varied from 26.8 ± 0.3 to 81.1 ± 0.3 µm and 1.26 to 1.38%, respectively. The contact angles of the membranes ranged between 49° and 76° on their glass side while their ranged between 56° and 77° on their air side. The hybrid filtration polymer membranes allowed the uptake of more than 90% of the metal ions initially present in the contaminated solutions which were concentrated at 40 mg L−1. Adsorption experiments were carried out with CA/PSF-SiO2 membranes. The adsorption capacity of these compounds was shown to be higher than numerous other literature-known adsorbents, reaching 70 mg g−1 for CA/PSF 85/15-SiO2 towards Cu(II). Finally, by coupling adsorption with ultrafiltration in the tangential mode, the removal of Cu(II), Fe(II) and Zn(II) was found to be improved, allowing to reach a removal efficiency of 95% towards Cu(II) at a metal concentration of 60 mg L−1, and a promising removal efficiency around 98% at a very high metal concentration of 900 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Inyinbor AA, Adebesin BO, Oluyori AP, Adelani ATA, Dada AO, Oreofe TA (2018) Water pollution: effects, prevention and climatic impact. Intech Open, London, pp 52–54

    Google Scholar 

  2. Alina B (2018) Pollution facts and types of pollution. Live Sci Contrib 136–139

  3. Gherasim CV, Hanckova K, Palarcik J, Mikulasek P (2015) Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane. J Membr Sci 490:46–56

    Article  CAS  Google Scholar 

  4. Basaran G, Kavak D, Dizge N, Asci Y, Solener M, Ozbey B (2016) Comparative study of the removal of nickel(II) and chromium(VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalin Water Treat 57:21870–21880

    Article  CAS  Google Scholar 

  5. Alosmanov RM, Wolski K, Zapotoczny S (2017) Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling–drying ability. Cellulose 24:285–293

    Article  CAS  Google Scholar 

  6. Ahn HR, Tak TM, Kwon YN (2015) Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes. Desalin Water Treat 53:1–7

    Article  CAS  Google Scholar 

  7. Choi HG et al (2016) Efficacy of synthesis conditions on functionalized carbon nanotube blended cellulose acetate membrane for desalination. Desalin Water Treat 57:7545–7554

    Article  CAS  Google Scholar 

  8. Inukai S et al (2015) High-performance multifunctional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci Rep 5:13562–13572

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ebrahim SH, Mosry A, Kanawy E, Abdel-Fattah T, Kandil S (2016) Reverse osmosis membranes for water desalination based on cellulose acetate extracted from Egyptian rice straw. Desalin Water Treat 5:20738–20748

    Google Scholar 

  10. Wu JJ, Field RW (2019) On the understanding and feasibility of “Breakthrough” osmosis. Sci Rep 9:16464–16472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen K, Xiao C, Liu H, Li G, Meng X (2018) Structure design on reinforced cellulose triacetate composite membrane for reverse osmosis desalination process. Desalination 441:35–43

    Article  CAS  Google Scholar 

  12. Morsy A, Ebrahim A, Kenawy ER, Fattah TA, Kandil S (2016) Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination. Water Sci Technol Water Supply 16:1046–1056

    Article  CAS  Google Scholar 

  13. Said MS, Gad A, Kandil S (2017) Toward energy efficient reverse osmosis polyamide thin-film composite membrane based on diaminotoluene. Desalin Water Treat 71:261–270

    Article  CAS  Google Scholar 

  14. Reis R et al (2016) Towards enhanced performance thin-film composite membranes via surface plasma modification. Sci Rep 6:29206–29219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu J et al (2017) Functionalization of biodegradable nonwoven fabric as super oleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:5968–5973

    Article  CAS  PubMed  Google Scholar 

  16. Ge J et al (2017) Super hydrophilic and underwater super oleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. J Mater Chem A 5:497–502

    Article  CAS  Google Scholar 

  17. Guo F, Guo Z (2016) Inspired smart materials with external stimuli responsive wettability: a review. RSC Adv 6:36623–36641

    Article  CAS  Google Scholar 

  18. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058

    Article  CAS  Google Scholar 

  19. Garcia-Valdez O, Champagne P, Cunningham MF (2018) Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 76:151–173

    Article  CAS  Google Scholar 

  20. Liu Y, Huang H, Huo P, Gu J (2017) Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydr Polym 165:266–275

    Article  CAS  PubMed  Google Scholar 

  21. Zou G (2018) Temperature-sensitive poly (N-isopropylacrylamide)/Konjac glucomannan/graphene oxide composite membranes with improved mechanical property, swelling capability, and degradability. Int J Polym Sci 1–10:2018

    Google Scholar 

  22. Yasmeen E, El Sayed M, Amel E, Hammed H, Ebrahim S (2020) Novel grafted/crosslinked cellulose acetate membrane with N-isopropylacrylamide/N, N-methylenebisacrylamide for water desalination. Sci Rep 10:9901

    Article  CAS  Google Scholar 

  23. Alessandra C, Rolando P, Irene G, Ada S, Assunta P, Giovanni B, Massimiliano C (2020) Development of polymeric membranes based on quaternized polysulfones for AMFC applications. Polymers 12(2):283. https://sciprofiles.com/profile/931355

  24. Iacob C, Nechifor G, Niculescu V-C (2019) High selective mixed membranes based on mesoporous MCM-41 and MCM-41-NH2 particles in a polysulfone matrix. Front Chem 7:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hoan TVN, Thu HAN (2019) Preparation and characterization of a hydrophilic polysulfone membrane using graphene oxide. Hindawi J Chem. https://doi.org/10.1155/2019/3164373

    Article  Google Scholar 

  26. Atefeh T, Yoones J, Reza Y (2019) Polysulfone nanocomposite membrane embedded by silanized nanodiamond for removal of humic acid from water. J Water Environ Technol 22:10

    Google Scholar 

  27. Muhulet A, Tuncel C, Miculescu F, Pandele AM, Bobirica C (2020) Synthesis and characterization of polysulfone–TiO2 decorated MWCNT composite membranes by sonochemical method. Appl Phys A 126:233

    Article  CAS  Google Scholar 

  28. Ahmed A, Ahmed K (2019) Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. J Macromol Sci A 56:153–161

    Article  CAS  Google Scholar 

  29. Qian T, Nana L, Qingchen L, Xue W, Yaotian Z (2019) Study on preparation and separation and adsorption performance of knitted tube composite β-cyclodextrin/chitosan porous. J Polym Sci 46:27–29

    Google Scholar 

  30. Sabad G, Waheed S, Ahmad A, Khan S, Hussain M, Jamil T, Zuber M (2015) Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultra-low-pressure reverse osmosis. J Taiwan Inst Chem Eng 57:129–138

    Article  CAS  Google Scholar 

  31. Hamidreza R, Vahid V, Atefeh A (2019) Structural manipulation of PES constituents to prepare advanced alternative polymer for ultrafiltration membrane. J Appl Polym Sci 10:48690

    Google Scholar 

  32. Noor M, Yomen A (2020) Adsorption of methylene blue onto electrospun nanofibrous membranes of polylactic acid and polyacrylonitrile coated with chloride doped polyaniline. Sci Rep 10:547–560

    CAS  Google Scholar 

  33. Xiaoxiao Z, Xuejuan S, Liang M, Xuan P (2019) Preparation of chitosan stacking membranes for adsorption of copper ions. Polymers (Basel) 11(9):1463

    Article  CAS  Google Scholar 

  34. Chibowski E, Scczes A (2018) Magnetic water treatment—a review of the latest approaches. Chemosphere 203:54–67

    Article  CAS  PubMed  Google Scholar 

  35. Fadhillah F, Zaidi SMJ, Khan Z, Khaled MM, Rahman F, Hammond PT (2013) Development of polyelectrolyte multilayer thin film composite membrane for water desalination application. Desalination 318:19–24

    Article  CAS  Google Scholar 

  36. Magnenet C, Jurin FE, Lakard S, Buron CC, Lakard B (2013) Polyelectrolyte modification of ultrafiltration membrane for removal of copper ions. Colloid Surf A 435:170–177

    Article  CAS  Google Scholar 

  37. Mokhter MA, Lakard S, Magnenet C, Euvrard M, Lakard B (2017) Preparation of polyelectrolyte-modified membranes for heavy metal ions removal. Environ Technol 38:2476–2485

    Article  CAS  PubMed  Google Scholar 

  38. Qin ZP, Geng CL, Guo HX, Du Z, Zhang GJ, Ji SL (2013) Synthesis of positively charged polyelectrolyte multilayer membranes for removal of divalent metal ions. J Mater Res 28:1449–1457

    Article  CAS  Google Scholar 

  39. Munoz SV, Martinez MS, Torres MG, Alcala SP, Quintanilla F, Rodriguez-Canto A, Rodriguez JR (2014) Adsorption and removal of cadmium ions from simulated wastewater using commercial hydrophilic and hydrophobic silica nanoparticles: a comparison with sol–gel particles. Water Air Soil Pollut 225:2165–2176

    Article  CAS  Google Scholar 

  40. Wahyu K, Kung Y (2020) Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustain Environ Res 29:32

    Google Scholar 

  41. Tawfik A, Al-Saad HR, Ahmet S, Mustafa T (2019) Solution rheology of poly (acrylic acid)-grafted silica nanoparticles. Macromolecules 9:1309

    Google Scholar 

  42. Chongfeng Z, Siyang Y, Venkat P, Pinar A (2019) Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polym Adv Technol 12:5

    Google Scholar 

  43. Ehsani M, Aroujalian A (2019) Application of mesoporous silica nanoparticles modified with dibenzoylmethane as a novel composite for efficient removal of Cd(II), Hg(II), and Cu(II) ions from aqueous media. J Inorg Organomet Polym Mater 16:234

    Google Scholar 

  44. Ancha R, Daniela P, Ovidiu O (2019) Ultrafiltration mixed matrix membranes based on mesoporous silica (MCM-41, HMS) embedded in polysulfone. Rev Chim Buchar Orig Ed 70(9):3089–3093

    Google Scholar 

  45. Tingli L, Lunyang L, Fengchao C (2020) Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. J Mater Chem 89:223–227

    Google Scholar 

  46. Kweangwon S, Ki N, Haksoo H (2020) Proton transport in aluminum-substituted mesoporous silica channel-embedded high-temperature anhydrous proton-exchange membrane fuel cells. Sci Rep 10:741

    CAS  Google Scholar 

  47. Arefeh A, Elham A (2020) Synthesis of PMHS–PDMS composite membranes embedded with silica nanoparticles and their application to separate of DMSO from aqueous solutions. Polym Bull. https://doi.org/10.1007/s00289-020-03355-5

    Article  Google Scholar 

  48. Prescillia L, Jérémy S, David G, Agnès DB (2020) Well-defined polyester-grafted silica nanoparticles for biomedical applications: synthesis and quantitative characterization. Polymers 10:1016

    Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayembe J. Diainabo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diainabo, K.J., Mthombeni, N. & Motsa, M. Preparation and Characterization of Hybrids of Cellulose Acetate Membranes Blended with Polysulfone and Embedded with Silica for Copper(II), Iron(II) and Zinc(II) Removal from Contaminated Solutions. J Polym Environ 29, 3587–3604 (2021). https://doi.org/10.1007/s10924-021-02094-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02094-6

Keywords

Navigation