Skip to main content
Log in

The PLGA Microspheres Synthesized by a Thermosensitive Hydrogel Emulsifier for Sustained Release of Risperidone

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Risperidone is an important antipsychotic agent used for treatment of both acute and chronic schizophrenia. The drug has been effective in resolving the disease’s signs while keeping extrapyramidal side effects as low as possible. To achieve a sustained and gradual release of risperidone from PLGA microspheres, we utilized an emulsifying agent; PLGA-PEG-PLGA triblock (M-triblock), instead of PVA (M-PVA), applying ring-opening polymerization of the triblock via supercritical carbon dioxide (scCO2).

Methods

PVA and PLGA-PEG-PLGA (as emulsifiers) were successfully employed to prepare risperidone-loaded PLGA microspheres. The scCO2 and microwave irradiation methods were used to construct PLGA-PEG-PLGA copolymers. The microspheres were subjected to various analyses to determine the particles’ sizes, morphological characteristics, and structure (via XRD) and in vitro drug release kinetics. Drug loading capacity and encapsulation percentage were also determined.

Results

The results showed a mean diameter of 43.34 ± 2.30 µm for M-PVA, and that of the M-triblock was 57.49 ± 1.21 µm. Risperidone encapsulation percentages were 72.8 ± 2.09 for M-PVAs and 73.4 ± 2.41 for the M-triblock. Particle size, risperidone distribution, and drug loading and encapsulation percentages were similar between M-PVAs and the M-triblock. In scanning electron microscopy (SEM), the morphology of the triblock emulsifier was more uniform than PVAs.

Conclusions

The triblock emulsifier showed slower initial drug release than PVAs due to the precipitation of the triblock hydrogel around PLGA microspheres. Overall, the triblock used here can be a good alternative to PVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PEG:

Polyethylene glycol

PLGA:

Poly lactic-co-glycolic acid

Triblock:

PLGA-PEG-PLGA

M-triblock:

Microsphere via PLGA-PEG-PLGA as an emulsifier

PVA:

Poly(vinyl alcohol)

M-PVA:

Microsphere via PVA as an emulsifier

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

DCM:

Dichloromethane

FDA:

U.S. Food and Drug Administration

GA:

Glycolide

LA:

D,L-lactide

FID:

Flame ionization detector

GPC:

Gel permeation chromatography

1H-NMR:

Proton-nuclear magnetic resonance

PDI:

Polydispersity index

SEC:

Size exclusion chromatography

A s/A is :

Areasample/Ainternal standard

PBS:

Phosphate buffer solution

THF:

Tetrahydrofuran

References

  1. Hori H, Katsuki A, Atake K, Yoshimura R. Effects of Continuing Oral Risperidone vs. Switching from Risperidone to Risperidone Long-Acting Injection on Cognitive Function in Stable Schizophrenia Patients: A Pilot Study. Front Psych 2018;9(74). https://doi.org/10.3389/fpsyt.2018.00074

  2. Covell NH, McEvoy JP, Schooler NR, Stroup TS, Jackson C, Rojas I, Essock SM, Network ST. Effectiveness of switching from long-acting injectable fluphenazine or haloperidol decanoate to long-acting injectable risperidone microspheres. J Clin Psychiatry. 2012;73(5):669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218:2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilson C, Washington N, Peach J, Murray G, Kennerley J. The behaviour of a fast-dissolving dosage form (Expidet) followed by γ-scintigraphy. Int J Pharm. 1987;40(1–2):119–23.

    Article  CAS  Google Scholar 

  5. Song J, Xie J, Li C, Lu JH, Meng QF, Yang Z, Lee RJ, Wang D, Teng LS. Near infrared spectroscopic (NIRS) analysis of drug-loading rate and particle size of risperidone microspheres by improved chemometric model. Int J Pharm. 2014;472(1–2):296–303.

  6. Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Salanti G, Davis JM. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. The Lancet. 2012;379(9831):2063–71.

    Article  CAS  Google Scholar 

  7. Harrison TS, Goa KL. Long-acting risperidone CNS Drugs. 2004;18(2):113–32.

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Thabit NY, Makhlouf ASH. Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, 2018;1:3–41. Elsevier.

  9. D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP. Development of risperidone PLGA microspheres. Journal of Drug Delivery 2014.

  10. Blader JC, Pliszka SR, Kafantaris V, Foley CA, Carlson GA, Crowell JA, Bailey BY, Sauder C, Daviss WB, Sinha C. Stepped treatment for attention-deficit/hyperactivity disorder and aggressive behavior: a randomized, controlled trial of adjunctive risperidone, divalproex sodium, or placebo after stimulant medication optimization. J Am Acad Child Adolesc Psychiatry 2020.

  11. Su Z, Sun F, Shi Y, Jiang C, Meng Q, Teng L, Li Y. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly (D, L-lactide-co-glycolide) microsphere. Chem Pharm Bull. 2009;57(11):1251–6.

    Article  CAS  Google Scholar 

  12. Oroojalian F, Jahanafrooz Z, Chogan F, Rezayan AH, Malekzade E, Rezaei SJT, Nabid MR, Sahebkar A. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly (CL─ CO─ LA)-b-PEG for wound healing applications. J Cell Biochem. 2019;120(10):17194–207.

    Article  CAS  PubMed  Google Scholar 

  13. Selmin F, Blasi P, DeLuca PP. Accelerated polymer biodegradation of risperidone poly (D, L-lactide-co-glycolide) microspheres. AAPS PharmSciTech. 2012;13(4):1465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yerragunta B, Jogala S, Chinnala KM, Aukunuru J. Development of a novel 3-month drug releasing risperidone microspheres. J Pharm Bioallied Sci. 2015;7(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Francesco M, Primavera R, Summa M, Pannuzzo M, Di Francesco V, Di Mascolo D, Bertorelli R, Decuzzi P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J Control Release. 2020;319:201–12.

    Article  PubMed  Google Scholar 

  16. Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Jing Y, Li H. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology. Artificial Cells, Nanomedicine, and Biotechnology. 2020;48(1):266–75.

    Article  CAS  PubMed  Google Scholar 

  17. Park EJ, Amatya S, Kim MS, Park JH, Seol E, Lee H, Shin Y-H, Na DH. Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch Pharmacal Res. 2013;36(6):651–9.

    Article  CAS  Google Scholar 

  18. D’Souza S, Faraj J, DeLuca P. Microsphere delivery of Risperidone as an alternative to combination therapy. Eur J Pharm Biopharm. 2013;85(3):631–9.

    Article  PubMed  Google Scholar 

  19. Beauchemin M, Geguchadze R, Guntur AR, Nevola K, Le PT, Barlow D, Rue M, Vary CP, Lary CW, Motyl KJ. Exploring mechanisms of increased cardiovascular disease risk with antipsychotic medications: risperidone alters the cardiac proteomic signature in mice. Pharmacol Res. 2020;152:104589.

    Article  CAS  PubMed  Google Scholar 

  20. Su Z-X, Shi Y-N, Teng L-S, Li X, Wang L-X, Meng Q-F, Teng L-R, Li Y-X. Biodegradable poly (D, L-lactide-co-glycolide)(PLGA) microspheres for sustained release of risperidone: zero-order release formulation. Pharm Dev Technol. 2011;16(4):377–84.

    Article  CAS  PubMed  Google Scholar 

  21. Ereshefsky L, Mannaert E. Pharmacokinetic profile and clinical efficacy of long-acting risperidone. Drugs in R & D. 2005;6(3):129–37.

    Article  CAS  Google Scholar 

  22. Piacentino D, Kotzalidis GD, Schoretsanitis G, Paulzen M, Haen E, Cappelletti S, Giupponi G, Grözinger M, Conca A. Plasma risperidone-related measures in children and adolescents with oppositional defiant/conduct disorders. Clinical Psychopharmacology and Neuroscience. 2020;18(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)—clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–94.

    Article  CAS  PubMed  Google Scholar 

  24. Daneshvar M, Kamali H, Masoomi M, Ghaziaskar H. Supercritical carbon dioxide grafting of glycidyl methacrylate onto medium density polyethylene and purification of residual monomer and initiator. J Supercrit Fluids. 2012;70:119–25.

    Article  CAS  Google Scholar 

  25. Jalilvand M, Kamali H, Nematollahi A. Pressurized fluid extraction of rice bran oil using a modified supercritical fluid extractor and a central composite design for optimization. J Liq Chromatogr Relat Technol. 2013;36(11):1562–74.

    Article  CAS  Google Scholar 

  26. Watanabe M, Hashimoto Y, Kimura T, Kishida A. Characterization of engineering plastics plasticized using supercritical CO2. Polymers. 2020;12(1):134.

    Article  CAS  PubMed Central  Google Scholar 

  27. Moghadas BK, Akbarzadeh A, Azadi M, Aghili A, Rad AS, Hallajian S, The morphological properties and biocompatibility studies of synthesized nanocomposite foam from modified polyethersulfone/graphene oxide using supercritical CO2. J Macromol Sci A. 2020;1–10.

  28. Jeong B, Bae YH, Kim SW. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids Surf, B. 1999;16(1):185–93.

    Article  CAS  Google Scholar 

  29. Khodaverdi E, Akbari A, Tekie FSM, Mohajeri SA, Zohuri G, Hadizadeh F. Sustained delivery of amphotericin B and vancomycin hydrochloride by an injectable thermogelling tri-block copolymer. PDA J Pharm Sci Technol 2013;67.

  30. Khodaverdi E, Tekie FSM, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS PharmSciTech. 2012;13(2):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamali H, Khodaverdi E, Hadizadeh F. Ring-opening polymerization of PLGA-PEG-PLGA triblock copolymer in supercritical carbon dioxide. J Supercrit Fluids. 2018;137:9–15.

    Article  CAS  Google Scholar 

  32. Zhan S, Wan Z, Zhao Y, Wang J, Li Z. Ring-opening dispersion polymerization of L-lactide initiated by L-arginine in supercritical carbon dioxide. Polym Degrad Stab. 2020;171:109049.

    Article  CAS  Google Scholar 

  33. Zentner GM, Rathi R, Shih C, McRea JC, Seo M-H, Oh H, Rhee B, Mestecky J, Moldoveanu Z, Morgan M. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release. 2001;72(1):203–15.

    Article  CAS  PubMed  Google Scholar 

  34. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Fathi M, Salatin S, Salehi R, Jelvehgari M. PLA-PCL-PEG-PCL-PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and in vitro evaluation. Pharm Dev Technol (just-accepted). 2020;1–48.

  35. Choonara YE, Kondiah PPD, Kondiah PJ, Kumar P, Du Toit LC, Marimuthu T, Pillay VA. Thermoresponsive Hydrogel. In. US Patent App. 2020;16/482,166.

  36. Liu W, Jin X, Yao S, Wang F. Determination of risperidone and 9-Hydroxyrisperidone in human serum by heart-cutting isocratic two-dimensional liquid chromatography. Anal Lett. 2020;1–18.

  37. Schaefer M, Sarkar S, Theophil I, Leopold K, Heinz A, Gallinat J. Acute and long-term memantine add-on treatment to risperidone improves cognitive dysfunction in patients with acute and chronic schizophrenia. Pharmacopsychiatry. 2020;53(01):21–9.

    Article  CAS  PubMed  Google Scholar 

  38. Iwata N, Ishigooka J, Naoi I, Matsumoto M, Kanamori Y, Nakamura H, Higuchi T. Long-term safety and efficacy of blonanserin transdermal patches in Japanese patients with schizophrenia: a 52-week open-label. Multicenter Study CNS drugs. 2020;34(1):103–16.

    Article  CAS  PubMed  Google Scholar 

  39. Rahimizadeh M, Eshghi H, Shiri A, Ghadamyari Z, Matin MM, Oroojalian F, Pordeli P. Fe (HSO 4) 3 as an efficient catalyst for diazotization and diazo coupling reactions. J Korean Chem Soc. 2012;56(6):716–9.

    Article  CAS  Google Scholar 

  40. Rawat A, Bhardwaj U, Burgess DJ. Comparison of in vitro–in vivo release of Risperdal® Consta® microspheres. Int J Pharm. 2012;434(1–2):115–21.

    Article  CAS  PubMed  Google Scholar 

  41. Rawat A, Stippler E, Shah VP, Burgess DJ. Validation of USP apparatus 4 method for microsphere in vitro release testing using Risperdal® Consta®. Int J Pharm. 2011;420(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  42. An T, Choi J, Kim A, Lee JH, Nam Y, Park J, Kyung Sun B, Suh H, Kim CJ, Hwang SJ. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process. Int J Pharm 2020;503(1–2), 8–15.

  43. Lin X, Xu Y, Tang X, Zhang Y, Chen J, Zhang Y, He H, Yang Z. A uniform ultra-small microsphere/SAIB hybrid depot with low burst release for long-term continuous drug release. Pharm Res. 2015;32(11):3708–21.

    Article  CAS  PubMed  Google Scholar 

  44. Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm. 2017;113:60–74.

    Article  CAS  PubMed  Google Scholar 

  45. Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf, B. 2011;86(1):206–11.

    Article  CAS  Google Scholar 

  46. Mazzoli A, Favoni O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program. Powder Technol. 2012;225:65–71.

    Article  CAS  Google Scholar 

  47. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35.

    Article  CAS  PubMed  Google Scholar 

  48. Weiden PJ, Schooler NR, Weedon JC, Elmouchtari A, Sunakawa-McMillan A. Maintenance treatment with long-acting injectable risperidone in first-episode schizophrenia: a randomized effectiveness study. J Clin Psychiatry. 2012;73(9):1224–33.

    Article  CAS  PubMed  Google Scholar 

  49. Mouez MA, Zaki NM, Mansour S, Geneidi AS. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres. Eur J Pharm Sci. 2014;51:59–66.

    Article  PubMed  Google Scholar 

  50. He J, Wang W, Long F, Zou Z, Fu Z, Xu Z. Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation. Mater Sci Eng, B. 2012;177(12):967–74.

    Article  CAS  Google Scholar 

  51. Wang S, Wang L, Yang T, Liu X, Zhang J, Zhu B, Zhang S, Huang W, Wu S. Porous α-Fe2O3 hollow microspheres and their application for acetone sensor. J Solid State Chem. 2010;183(12):2869–76.

    Article  CAS  Google Scholar 

  52. Rashidi A, Omidi M, Choolaei M, Nazarzadeh M, Yadegari A, Haghierosadat F, Oroojalian F, Azhdari M. Electromechanical properties of vertically aligned carbon nanotube. In: Advanced Materials Research 2013;332–336. Trans Tech Publ

  53. Desai K-GH, Schwendeman SP. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013;165(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  54. Della Porta G, Adami R, Del Gaudio P, Prota L, Aquino R, Reverchon E. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release. J Pharm Sci. 2010;99(11):4720–9.

    Article  CAS  PubMed  Google Scholar 

  55. Deshmukh RK, Naik JB. Diclofenac sodium-loaded Eudragit® microspheres: optimization using statistical experimental design. J Pharm Innov. 2013;8(4):276–87.

    Article  Google Scholar 

  56. Sojitra C, Tehare A, Dholakia C, Sudhakar P, Agarwal S, Singh KK. Development and validation of residual solvent determination by headspace gas chromatography in Imatinib Mesylate API SN. Appl Sci. 2019;1(3):233.

    Google Scholar 

  57. Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017;520(1–2):79–85.

    Article  CAS  PubMed  Google Scholar 

  58. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials. 2010;31(14):4113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castor TP. Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein. In. Google Patents 2013.

  60. Khodaverdi E, Honarmandi R, Alibolandi M, Baygi RR, Hadizadeh F, Zohuri G. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs. Iran J Basic Med Sci. 2014;17(5):337.

    PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Riley T, Christopher D, Arp J, Casazza A, Colombani A, Cooper A, Dey M, Maas J, Mitchell J, Reiners M. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). AAPS PharmSciTech. 2012;13(3):978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf, B. 2013;108:366–73.

    Article  CAS  Google Scholar 

  64. Jahromi LP, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon. 2020;6(2):e03451.

    Article  Google Scholar 

  65. Gomes-Filho MS, Barbosa MAA, Oliveira FA. A statistical mechanical model for drug release: relations between release parameters and porosity. Phys A. 2020;540:123165.

    Article  CAS  Google Scholar 

  66. Khodaverdi E, Hadizadeh F, Tekie FSM, Jalali A, Mohajeri SA, Ganji F. Preparation and analysis of a sustained drug delivery system by PLGA–PEG–PLGA triblock copolymers. Polym Bull. 2012;69(4):429–38.

    Article  CAS  Google Scholar 

  67. Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, Hussain Z, Sohail M, Khan SU, Htar TT. Engineering of naproxen loaded polymer hybrid enteric microspheres for modified release tablets: development, characterization, in silico modelling and in vivo evaluation. Drug Des Dev Ther. 2020;14:27.

    Article  CAS  Google Scholar 

  68. Yang Z, Cai W. Surfactant-free preparation of mesoporous solid/hollow boehmite and bayerite microspheres via double hydrolysis of NaAlO2 and formamide from room temperature to 180° C. J Colloid Interface Sci. 2020;564:182–92.

    Article  CAS  PubMed  Google Scholar 

  69. Luan X, Skupin M, Siepmann J, Bodmeier R. Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly (lactide-co-glycolide) microparticles. Int J Pharm. 2006;324(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  70. Yang Z, Liu L, Su L, Wu X, Wang Y, Liu L, Lin X. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int J Pharm. 2020;575:119006.

    Article  CAS  PubMed  Google Scholar 

  71. Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech. 2012;13(2):460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khodaverdi E, Farhadi F, Jalali A, Mirzazadeh Tekie FS. Preparation and investigation of poly (N-isopropylacrylamide-acrylamide) membranes in temperature responsive drug delivery. Iran J Basic Med Sci. 2010;13(3):102–10.

    CAS  Google Scholar 

  73. Singh J, Gupta S, Kaur H. Prediction of in vitro drug release mechanisms from extended release matrix tablets using SSR/R2 technique. Trends Applied Sci Res. 2011;6:400–9.

    Article  CAS  Google Scholar 

  74. Khodaverdi E, Rajabi O, Abdekhodai M, X Yu Wu. A novel composite membrane for PH responsive permeation. Iran J Basic Med Sci. 2008;11(2):70–9.

    Google Scholar 

  75. Chime SA, Attama AA, Builders PF, Onunkwo GC. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation. J Microencapsul. 2013;30(4):335–45.

    Article  CAS  PubMed  Google Scholar 

  76. Atyabi F, Khodaverdi E, Dinarvand R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. Int J Pharm. 2007;339(1–2):213–21.

    Article  CAS  PubMed  Google Scholar 

  77. Rahimi M, Mobedi H, Behnamghader A. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation. J Microencapsul. 2016;33(4):355–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant number 951793 from Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Oroojalian or Elham Khodaverdi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, F., Kamali, H., Hadizadeh, F. et al. The PLGA Microspheres Synthesized by a Thermosensitive Hydrogel Emulsifier for Sustained Release of Risperidone. J Pharm Innov 17, 712–724 (2022). https://doi.org/10.1007/s12247-021-09544-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09544-7

Keywords

Navigation