Skip to main content
Log in

Non-isothermal crystallization kinetics of Se82−xTe18Gex (0 ≤ x ≤ 12) for memory applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The current paper explains the kinetic variables of crystallization kinetics. Se82−xTe18Gex (0 ≤ x ≤ 12) amorphous glassy materials were synthesized by the melt quench technique. XRD, SEM, and EDX characterizations were done to analyze the structure and elemental composition of the prepared amorphous glassy alloys. DSC measurements were taken to study the phase transition of the amorphous glassy alloys under identical conditions. For the crystallization kinetics, Kissinger, Ozawa, Tang, and Starink iso-conversional methods were used. The order of dimensional growth and frequency factors were examined with the help of the Matusita–Sakka and Augis–Bennett methods, respectively. Also, the compositional dependence of kinetic parameters was studied for the prepared Se-Te-Ge (STG) glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D Lencer, M Salinga and M Wuttig Adv. Mater. 23 2030 (2011).

    Article  Google Scholar 

  2. A A. Dubkov and B Spagnolo Eur. Phys. J. B 65 361 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  3. B Spagnolo et al. Chaos, Solitons and Fractals 000 (2015)

  4. D Valenti, L Magazz`u, P Caldara and B Spagnolo Physical Review B 91 235412 (2015).

    Article  ADS  Google Scholar 

  5. B Spagnolo, C Guarcello, L Magazzù and A Carollo Dominique persano adorno and davide valenti Entropy 19 20 (2017).

    Article  ADS  Google Scholar 

  6. A V Yakimov et al. Appl. Phys. Lett. 114 253506 (2019).

    Article  ADS  Google Scholar 

  7. H Fritzsche Annu. Rev. Mat. Sci. 2 697 (1972).

    Article  ADS  Google Scholar 

  8. V Srivastava and P Mishra Indian J. Phys. 94 1 (2020).

    Article  Google Scholar 

  9. I H Afify, M S Abo-Ghazala, M M El-Zaidia and E M Farag Indian J. Phys. 94 447 (2020).

    Article  ADS  Google Scholar 

  10. V Rao and D K Dwivedi J. Mat. Sci. Elect. 28 6208 (2017).

    Article  Google Scholar 

  11. V Rao, N Mehta, N Chandel and D K Dwivedi Phase Trans. 91 490 (2018).

    Article  Google Scholar 

  12. V Rao, N Chandel, N Mehta and D K Dwivedi J. Therm. Anal. Calorim. (2018)

  13. P K Singh and D K Dwivedi Ferroelectrics 520 265 (2017).

    Article  Google Scholar 

  14. B S Patial and S K Tripathi J. Therm. Anal. Calorim. 106 845 (2011).

    Article  Google Scholar 

  15. P Lucas, Z Yang, M K Fah, T Luo, S Jiang and C Boussard-Pledel Opt. Mater Express. 3 1049 (2013).

    Article  ADS  Google Scholar 

  16. S Sen, T Edwards, J Y Cho and Y C Joo Phys. Rev. Lett. 108 195506 (2012).

    Article  ADS  Google Scholar 

  17. S Cui et al. Adv. Appl. Ceram. 114 S42 (2015).

    Article  Google Scholar 

  18. H Adachi and K C Kao J. Appl. Phys 51 6326 (1980).

    Article  ADS  Google Scholar 

  19. Z Cernosek, E Cernoskova, M Hejdova and J Holubora J. Non-Cryst. Solid 460 169 (2017).

    Article  ADS  Google Scholar 

  20. R Svoboda, D Brandova and J Malek J. Alloys Comput. 680 427 (2016).

    Article  Google Scholar 

  21. A Cheruvalath, I Sebastian, M Sebastian, VPN Nampoori 72 265 (2017)

  22. J Zavadil, P Kostka, J Pedlikova, K Zdansky et al J. Non-Cryst. Solid. 355 2083 (2009).

    Article  ADS  Google Scholar 

  23. M Mohamed, S Moustafa, A M A Elnaiem and M M A Rahim J. Alloys Comput. 647 771 (2015).

    Article  Google Scholar 

  24. Z U Borisova Glassy Semiconductors. (New York: Plenum) (1981)

    Book  Google Scholar 

  25. W A Jonnson and K F Mehl Trans. Am. Inst. Mining Met. Engns. 12 135 (1981).

    Google Scholar 

  26. M Avrami J. Chem Phys. 7 1103 (1939).

    Article  ADS  Google Scholar 

  27. M Avrami J. Chem. Phys. 8 212 (1940).

    Article  ADS  Google Scholar 

  28. M Avrami and J Granulation J. Chem. Phys. 9 177 (1941).

    Article  ADS  Google Scholar 

  29. S Glasstone Textbook of Physical chemistry, 2nd edn. (New York: Macmillan India Ltd.) (1991)

    Google Scholar 

  30. K Matusita, T K Konotsu and R Yorota J. Mater. Sci. 38 741 (1980).

    Google Scholar 

  31. T Wanjun and C Donghua Thermochim. Acta 443 72 (2005).

    Article  Google Scholar 

  32. M J Starink Thermochim Acta 288 97 (1996).

    Article  Google Scholar 

  33. C D Doyle J. Appl. Polym. Sci. 5 285 (1961).

    Article  Google Scholar 

  34. J A Augis and J E Bennett J. Therm. Anal. Calor. 13 283 (1978).

    Article  Google Scholar 

  35. W Zhang, R Mazzarello, M Wuttig and E Ma Nature Reviews Materials 4 150 (2019).

    Article  ADS  Google Scholar 

  36. B Chen, G H T Brink, G Palasantzas and B J Kooi The Journal of Physical Chemistry C 121 8569 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ACMS, Indian Institute of Technology, Kanpur, India, for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V., Singh, P.K., Lohia, P. et al. Non-isothermal crystallization kinetics of Se82−xTe18Gex (0 ≤ x ≤ 12) for memory applications. Indian J Phys 96, 1075–1085 (2022). https://doi.org/10.1007/s12648-021-02036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02036-x

Keywords

Navigation