Skip to main content

Advertisement

Log in

A review of the potentiality of biochar technology to abate emissions of particulate matter originating from agriculture

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Agricultural operations and processes generate copious quantities of particulate matter (PM) both directly and indirectly through emissions of PM precursor gases with dire consequences for human health, environment and climate. PM emissions from agricultural activities are projected to continually rise in the light of soaring food demand driven by a ballooning global population, and thus, plausible measures are needed to combat them. Recently, interest in using biochar to attenuate PM emissions of agricultural origin, especially the secondary PM precursors, has gained traction and this review study is purposed to examine the capacity of the technology to curb the agricultural-related PM emissions basing on observations made in the previously concluded studies. The study gives a brief overview of the effects of PM and delineates its weighty agricultural sources plus detailing whether and how the pyrolysis technology and biochar as its product can help to alleviate the emissions. Additional discussions address the looming dilemma of biochar applications becoming a PM emission problem and the techniques that should be applied to ensure its sustainable usage. It is overwhelmingly clear from the studies reviewed that pyrolysis and resultant biochar have an enormous potential to attenuate PM from agriculture if adequately utilised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted from Hodan and Barnard 2004)

Fig. 2

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191

    Google Scholar 

  • Agyarko-Mintah E, Cowie A, Van Zwieten L, Singh BP, Smillie R, Harden S, Fornasier F (2017) Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag 61:129–137

    CAS  Google Scholar 

  • Aimar SB, Mendez MJ, Funk R, Buschiazzo DE (2012) Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeol Res 3(4):437–443

    Google Scholar 

  • Alfaro SC, Gomes L (2001) Modelling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J Geophys Res 106:18075–18084

    CAS  Google Scholar 

  • Almaraz M, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ (2018) Agriculture is a major source of NOx pollution in California. Sci Adv 4(1):eaao3477

    Google Scholar 

  • Aneja VP, Schlesinger WH, Erisman JW, Behera SN, Sharma M, Battye W (2012) Reactive nitrogen emissions from crop and livestock farming in India. Atmos Environ 47:92–103

    CAS  Google Scholar 

  • Arriaga H, Viguria M, López DM, Merino P (2017) Ammonia and greenhouse gases losses from mechanically turned cattle manure windrows: a regional composting network. J Environ Manag 203:557–563

    CAS  Google Scholar 

  • Baggs EM, Rees RM, Smith KA, Vinten AJA (2006) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag 16(2):82–87

    Google Scholar 

  • Bangham D, Razouk R (1938) The swelling of charcoal. Part V. The saturation and immersion expansions and the heat of wetting. Proc. R. Soc. Lond. Ser. A 166(927):572–586

    CAS  Google Scholar 

  • Bedos C, Cellier P, Calvet R, Barriuso E, Gabrielle B (2002) Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview. Agronomie 22(1):21–33

    Google Scholar 

  • Bedos C, Génermont S, Le Cadre E, Garcia L, Barriuso E, Cellier P (2009) Modelling pesticide volatilization after soil application using the mechanistic model Volt’Air. Atmos Environ 43(22–23):3630–3639

    CAS  Google Scholar 

  • Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73

    Google Scholar 

  • Bergametti G, Rajot JL, Pierre C, Bouet C, Marticorena B (2016) How long does precipitation inhibit wind erosion in the Sahel? Geophys Res Lett 43(12):6643–6649

    Google Scholar 

  • Beverland IJ, Cohen GR, Heal MR, Carder M, Yap C, Robertson C, Hart CL et al (2012) A Comparison of short-term and long-term air pollution exposure associations with mortality in two cohorts in Scotland. Environ Health Perspect 120(9):1280–1285

    Google Scholar 

  • Bharti SK, Barman SC, Kumar N (2019) Organochlorine pesticides (OCPs) in atmospheric particulate matter: sources and effects. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development, vol 1. Springer, Singapore, pp 97–111

    Google Scholar 

  • Bhuvaneshwari S, Hettiarachchi H, Meegoda J (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16(5):832

    CAS  Google Scholar 

  • Bittman S, Dedina M, Howard CM, Oenema O, Sutton MA (2014) Options for ammonia mitigation. Guidance from the UNECE task force on reactive nitrogen, chapter 8. Centre for Ecology and Hydrology, Edinburgh

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmosp 118:5380–5552

    CAS  Google Scholar 

  • Borrás E, Ródenas M, Vera T, Muñoz A (2015) Particulate matter formation from photochemical degradation of organophosphorus pesticides. IOP Conf Ser Earth Environ Sci 28:012003

    Google Scholar 

  • Brennan RB, Healy MG, Fenton O, Lanigan GJ (2015) The effect of chemical amendments used for phosphorus abatement on greenhouse gas and ammonia emissions from dairy cattle slurry: synergies and pollution swapping. PLoS ONE 10(6):e0111965

    Google Scholar 

  • Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de la Mora ML (2018) Smart fertilizers as a strategy for sustainable agriculture. Adv Agron 147:119–157

    Google Scholar 

  • Cao G, Zhang X, Gong S, Zheng F (2008) Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J Environ Sci 20(1):50–55

    CAS  Google Scholar 

  • Carvacho OF, Ashbaugh LL, Brown MS, Flocchini RG (2004) Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology 59(1–4):75–80

    Google Scholar 

  • Cassel T, Trzepla-Nabaglo K, Flocchini R (2003) PM10 emission factors for harvest and tillage of row crops. International emission inventory conference ‘emission inventories—applying new technologies, San Diego, 29 April to 1 May. Available at http://www.epa.gov/ttn/chief/conference/ei12/. Accessed 22 Aug 2020

  • Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T (2011) Manure management: implications for greenhouse gas emissions. Anim Feed Sci Technol 166–167:514–531

    Google Scholar 

  • Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Dumka UC (2016) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034

    Google Scholar 

  • Chen W, Liao X, Wu Y, Liang JB, Mi J, Huang J, Wang Y (2017) Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag 61:506–515

    CAS  Google Scholar 

  • Chen Y, Yang Q, Krewski D, Shi Y, Burnett RT, McGrail K (2004) Influence of relatively low level of particulate air pollution on hospitalization for COPD in elderly people. Inhal Toxicol 16(1):21–25

    CAS  Google Scholar 

  • Choi H, Hyun J, Kim YJ, Yoo G (2019) Improvement of ammonia emission inventory estimation methodology for fertilizer application in the agricultural sector. J Climate Change Res 10:237–242

    Google Scholar 

  • Chowdhury MA, de Neergaard A, Jensen LS (2014) Composting of solids separated from anaerobically digested animal manure: effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosys Eng 124:63–77

    Google Scholar 

  • Clausnitzer H, Singer MJ (1996) Respirable-dust production from agricultural operations in the Sacramento Valley, California. J Environ Qual 25:877–884

    CAS  Google Scholar 

  • Coscollà C, Yusà V (2016) Pesticides and agricultural air quality. Compr Anal Chem 73:423–490

    Google Scholar 

  • Coscollà C, Yusà V, Martí P, Pastor A (2008) Analysis of currently used pesticides in fine airborne particulate matter (PM 2.5) by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1200(2):100–107

    Google Scholar 

  • Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2012) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131

    Google Scholar 

  • Dhamodharan K, Varma VS, Veluchamy C, Pugazhendhi A, Rajendran K (2019) Emission of volatile organic compounds from composting: a review on assessment, treatment and perspectives. Sci Total Environ 695:133725

    CAS  Google Scholar 

  • Di Natale F, Gallo M, Nigro R (2009) Adsorbents selection for aflatoxins removal in bovine milks. J Food Eng 95(1):186–191

    Google Scholar 

  • Ding X, He QF, Shen RQ, Yu QQ, Zhang YQ, Xin JY, Wen TX et al (2016) Spatial and seasonal variations of isoprene secondary organic aerosol in China: significant impact of biomass burning during winter. Sci Rep 6(1):1–10

    CAS  Google Scholar 

  • Ding X, Wang X, Xie Z, Zhang Z, Sun L (2013) Impacts of siberian biomass burning on organic aerosols over the north pacific ocean and the Arctic: primary and secondary organic tracers. Environ Sci Technol 47(7):3149–3157

    CAS  Google Scholar 

  • Dokoohaki H, Miguez F, Laird D, Dumortier J (2019) Where should we apply biochar? Environ Res Lett 14:044005

    CAS  Google Scholar 

  • Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295(10):1127

    CAS  Google Scholar 

  • Dugan E, Verhoef A, Robinson S, Sohi S, Gilkes RJ, Prakpongep N, (2010) Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana. In: World Congress of Soil Science: Soil Solutions for A Changing World

  • Dunlop MW, Moss AF, Groves PJ, Wilkinson SJ, Stuetz RM, Selle PH (2016) The multidimensional causal factors of “wet litter” in chicken-meat production. Sci Total Environ 562:766–776

    CAS  Google Scholar 

  • EPA (2003) The hidden hazards of backyard burning: what you need to know to protect your health and the environment. U.S Environmental Protection Agency, Washington

    Google Scholar 

  • Erenstein O (2002) Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications. Soil Tillage Res 67(2):115–133

    Google Scholar 

  • Espallardo TV, Muñoz A, Palau JL (2012) Pesticide residues in the atmosphere. In: Rathore HS, Nollet LML (eds) Pesticides: evaluation of environmental pollution, 1st edn. CRC Press, Boca Raton, pp 203–232

    Google Scholar 

  • European Biochar Foundation (EBC) (2012) European biochar certificate—guidelines for a sustainable production of biochar. Version 9.0 of 1st june 2020. Available at http://www.european-biochar.org/en/download

  • Fan C, Chen H, Li B, Xiong Z (2017) Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences 14(11):2851–2863

    CAS  Google Scholar 

  • Febrisiantosa A, Ravindran B, Choi H (2018) The effect of co-additives (biochar and FGD gypsum) on ammonia volatilization during the composting of livestock waste. Sustainability 10(3):795

    Google Scholar 

  • Feng Y, Sun H, Xue L, Liu Y, Gao Q, Lu K, Yang L (2017) Biochar applied at an appropriate rate can avoid increasing NH 3 volatilization dramatically in rice paddy soil. Chemosphere 168:1277–1284

    CAS  Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res. https://doi.org/10.1029/2006jd008003

    Article  Google Scholar 

  • Forbid GT, Ghogomu JN, Busch G, Frey R (2011) Open waste burning in Cameroonian cities: an environmental impact analysis. Environmentalist 31(3):254–262

    Google Scholar 

  • Funk R, Reuter HI, Hoffmann C, Engel W, Öttl D (2008) Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf Proc Land 33(12):1851–1863

    Google Scholar 

  • Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC, Flowler I et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15(14):8217–8299

    CAS  Google Scholar 

  • Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emissions from rice straw open field burning in India Thailand and the Philippines. Environ Pollut 157(5):1554–1558

    CAS  Google Scholar 

  • Gao X, Wu H (2013) Aerodynamic properties of biochar particles: effect of grinding and implications. Environ Sci Technol Lett 1(1):60–64

    Google Scholar 

  • Genesio L, Vaccari FP, Miglietta F (2016) Black carbon aerosol from biochar threats its negative emission potential. Glob Chang Biol 22(7):2313–2314

    Google Scholar 

  • Gentile R, Vanlauwe B, Van Kessel C, Six J (2009) Managing N availability and losses by combining Fertiliser-N with different quality residues in Kenya. Agr Ecosyst Environ 131:308–314

    CAS  Google Scholar 

  • Gerlach H, Schmidt HP (2014) Biochar in poultry farming, the Biochar Journal, Arbaz, Switzerland. ISSN 2297–1114 www.biochar-journal.org/en/ct/10 Version of 01th August 2014 Accessed 21 Aug 2020

  • Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G et al (2000) Ambient pollution and heart rate variability. Circulation 101(11):1267–1273

    CAS  Google Scholar 

  • Goossens D (2004) Wind erosion and tillage as a dust production mechanism on North European farmland. In: Goossens D, Riksen M (eds) Wind erosion and dust dynamics: observations, simulations, modelling. ESW Publications, Wageningen, pp 15–40

    Google Scholar 

  • Graber ER, Tsechansky L, Khanukov J, Oka Y (2011) Sorption, volatilization, and efficacy of the Fumigant 1,3-dichloropropene in a biochar-amended soil. Soil Sci Soc Am J 75(4):1365

    CAS  Google Scholar 

  • Grantz D, Garner JH, Johnson D (2003) Ecological effects of particulate matter. Environ Int 29(2–3):213–239

    CAS  Google Scholar 

  • Guevara M (2016) Emissions of primary particulate matter. Chapter 1, in airborne particulate matter: sources, atmospheric processes and health: royal society of chemistry. Edited by R M Harrison, R E Hester & X Querol

  • Hainsch A (2004) Ursachenanalyse der PM10-Immission in urbanen Gebieten am Beispiel der Stadt Berlin. PhD thesis, Technical University Berlin

  • He T, Liu D, Yuan J, Luo J, Lindsey S, Bolan N, Ding W (2018a) Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci Total Environ 628–629:121–130

    Google Scholar 

  • He X, Yin H, Han L, Cui R, Fang C, Huang G (2018b) Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism. Biores Technol 271:375–382

    Google Scholar 

  • Hodan WB, Barnard WR (2004) Evaluating the contribution of PM2.5 precursor gases and re-entrained road emissions to mobile source PM2.5 particulate matter emissions MACTEC under contract to the federal highway administration. Available at https://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf. Accessed 22 Aug 2020

  • Hogarh JN, Seike N, Kobara Y, Ofosu-Budu GK, Carboo D, Masunaga S (2014) Atmospheric burden of organochlorine pesticides in Ghana. Chemosphere 102:1–5

    CAS  Google Scholar 

  • Hong C, Zhang Q, Zhang Y, Davis SJ, Tong D, Zheng Y, Liu Z et al (2019) Impacts of climate change on future air quality and human health in China. Proc Natl Acad Sci 116(35):17193–17200

    CAS  Google Scholar 

  • Jaeglé L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407

    Google Scholar 

  • Janczak D, Malińska K, Czekała W, Cáceres R, Lewicki A, Dach J (2017) Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag 66:36–45

    CAS  Google Scholar 

  • Janssen BH (1996) Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil 181(1):39–45

    CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    CAS  Google Scholar 

  • Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, Bruce A, Hungate BA et al (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:053001

    Google Scholar 

  • Jouhara H, Ahmad D, van den Boogaert I, Katsou E, Simons S, Spencer N (2018) Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Thermal Sci Eng Progress 5:117–143

    Google Scholar 

  • Kang J, Amoozegar A, Hesterberg D, Osmond DL (2011) Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma 161(3–4):194–201

    CAS  Google Scholar 

  • Kannari A, Baba T, Hayami H (2001) Estimation of ammonia emissions in Japan. J Jpn Soc Atmos Environ 36(1):29–38

    CAS  Google Scholar 

  • Kätterer T, Roobroeck D, Andrén O, Kimutai G, Karltun E, Kirchmann H, Nyberg G et al (2019) Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crop Res 235:18–26

    Google Scholar 

  • Kim SH, Luyima D, Kim JH, Lee JH, Shinogi Y, Lee CH, Oh TK (2019) Methane emissions from sandy clay loam paddy soils under different rice straw management strategies. J. Fac. Agr. Kyushu Univ. 64(2):219–224

    CAS  Google Scholar 

  • Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg 41:34–43

    CAS  Google Scholar 

  • Kjelgaard J, Sharratt B, Sundram I, Lamb B, Claiborn C, Saxton K, Chandler D (2004) PM10 emission from agricultural soils on the Columbia Plateau: comparison of dynamic and time integrated field-scale measurements and entrainment mechanisms. Agric For Meteorol 125:259–277

    Google Scholar 

  • Kleinman PJA, Sharpley AN, McDowell RW, Flaten DN, Buda AR, Tao L, Bergstrom L et al (2011) Managing agricultural phosphorus for water quality protection: principles for progress. Plant Soil 349(1–2):169–182

    CAS  Google Scholar 

  • Koneswaran G, Nierenberg D (2008) Global farm animal production and global warming: impacting and mitigating climate change. Environ Health Perspect 116(5):578–582

    Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69(4):1078

    CAS  Google Scholar 

  • Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB, Puchalski MA et al (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proc Natl Acad Sci 113(21):5874–5879

    CAS  Google Scholar 

  • Liu N, Charrua AB, Weng C-H, Yuan X, Ding F (2015) Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study. Biores Technol 198:55–62

    CAS  Google Scholar 

  • Liu Q, Liu B, Zhang Y, Lin Z, Zhu T, Sun R, Wang X et al (2017) Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biol Biochem 104:8–17

    CAS  Google Scholar 

  • Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Micheline SZS et al (2019a) Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 381:705–715

    CAS  Google Scholar 

  • Liu X, Liao J, Song H, Yang Y, Guan C, Zhang Z (2019b) A Biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci Rep. https://doi.org/10.1038/s41598-019-46065-3

    Article  Google Scholar 

  • Luyima D, Jeong HC, Lee JH, Kim SH, Shinogi Y, Lee CH, Oh TK (2019) Effects of straw incorporation time on rice yield and methane emissions from sandy loam paddy fields. J. Fac. Agr. Kyushu Univ. 64(2):213–218

    CAS  Google Scholar 

  • Luyima D, Lee JH, Sung JK, Oh TK (2020a) Co-pyrolysed animal manure and bone meal-based urea hydrogen peroxide (UHP) fertilisers are an effective technique of combating ammonia emissions. J Mater Cycles Waste Manag 22:1887–1898. https://doi.org/10.1007/s10163-020-01074-7

    Article  CAS  Google Scholar 

  • Luyima D, Sung J, Lee JH, Woo AH, Park SJ, Oh TK (2020b) Sorption of urea hydrogen peroxide by co-pyrolysed bone meal and cow dung slowed-down phosphorus and nitrogen releases but boosted agronomic efficiency. Appl Biol Chem 63:52. https://doi.org/10.1186/s13765-020-00535-9

    Article  CAS  Google Scholar 

  • Ma N, Zhang L, Zhang Y, Yang L, Yu C, Yin G, Doane TA et al (2016) Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLoS ONE 11(5):e0154091

    Google Scholar 

  • Maienza A, Genesio L, Acciai M, Miglietta F, Pusceddu E, Vaccari F (2017) Impact of biochar formulation on the release of particulate matter and on short-term agronomic performance. Sustainability 9(7):1131

    Google Scholar 

  • Malińska K, Zabochnicka-Świątek M, Dach J (2014) Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol Eng 71:474–478

    Google Scholar 

  • Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385

    CAS  Google Scholar 

  • Mandal S, Thangarajan R, Bolan NS, Sarkar B, Khan N, Ok YS, Naidu R (2016) Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 142:120–127

    CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321(5889):684–686

    CAS  Google Scholar 

  • Maurer D, Koziel JA, Bruning K, Parker DB (2017) Pilot scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia, and hydrogen sulphide gas emissions. Atmos Environ 150:313–321

    CAS  Google Scholar 

  • Mézes M, Balogh K, Tóth K (2010) Preventive and therapeutic methods against the toxic effects of mycotoxins—a review. Acta Vet Hung 58(1):1–17

    Google Scholar 

  • Michalewicz DA, Wanjura JD, Shaw BW, Parnel CB (2005) Evaluation of sources and controls of fugitive dust from agricultural operations. In: proceedings of the 2005 belt wide cotton conferences, New Orleans, Louisiana, 4–7 January

  • Morris RD (2001) Airborne particulates and hospital admissions for cardiovascular disease: a quantitative review of the evidence. Environ Health Perspect 109(suppl 4):495–500. https://doi.org/10.1289/ehp.01109s4495

    Article  CAS  Google Scholar 

  • Muñoz A, Ródenas M, Borrás E, Vázquez M, Vera T (2014a) The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions. Chemosphere 111:522–528. https://doi.org/10.1016/j.chemosphere.2014.04.087

    Article  CAS  Google Scholar 

  • Muñoz A, Vera T, Ródenas M, Borrás E, Mellouki A, Treacy J, Sidebottom H (2014b) Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions. Chemosphere 95:395–401. https://doi.org/10.1016/j.chemosphere.2013.09.053

    Article  CAS  Google Scholar 

  • Nag SK, Kookana R, Smith L, Krull E, Macdonald LM, Gill G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84(11):1572–1577

    CAS  Google Scholar 

  • Nagel G, Stafoggia M, Pedersen M, Andersen ZJ, Galassi C, Munkenast J, Jaensch A et al (2018) Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European study of cohorts for air pollution effects (ESCAPE). Int J Cancer. https://doi.org/10.1002/ijc.31564

    Article  Google Scholar 

  • Nascimento M, Rocha G, de Andrade J (2018) Pesticides in the atmospheric environment: an overview on their determination methodologies. Anal Methods. https://doi.org/10.1039/c8ay01327f

    Article  Google Scholar 

  • Novak JM, Sigua GC, Ducey TF, Watts DW, Stone KC (2019) Designer biochars impact on corn grain yields, biomass production, and fertility properties of a highly-weathered ultisol. Environments 6(6):64

    Google Scholar 

  • Oikawa PY, Ge C, Wang J, Eberwein JR, Liang LL, Allsman LA, Grantz DA et al (2015) Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat Commun 6(1):8753

    CAS  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13(4):991–1002

    Google Scholar 

  • Pagans E, Barrena R, Font X, Sánchez A (2006) Ammonia emissions from the composting of different organic wastes. Depend Process Temp Chemosphere 62(9):1534–1542

    CAS  Google Scholar 

  • Painter J Deglaciation in the andean region, human development report, 2008, United Nations Development Programme (UNDP) by the United Nations' global development network

  • Pardo G, Moral R, Aguilera E, del Prado A (2014) Gaseous emissions from management of solid waste: a systematic review. Glob Change Biol 21(3):1313–1327

    Google Scholar 

  • Parr SW, Mitchell DR (1930) The slacking of coal and its proper interpretation. Ind Eng Chem 22(11):1211–1212

    CAS  Google Scholar 

  • Parrington M, Palmer PI, Lewis AC, Lee JD, Rickard AR, Di Carlo P, Taylor JW et al (2013) Ozone photochemistry in boreal biomass burning plumes. Atmos Chem Phys 13(15):7321–7341

    Google Scholar 

  • Parrish DD, Williams EJ, Fahey DW, Liu SC, Fehsenfeld FC (1987) Measurement of nitrogen oxide fluxes from soils: Intercomparison of enclosure and gradient measurement techniques. J Geophys Res 92(D2):2165

    CAS  Google Scholar 

  • Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blanchard M, Host S et al (2014) Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos Environ 95:175–184

    CAS  Google Scholar 

  • Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(4):713–723

    CAS  Google Scholar 

  • Puga AP, de Queiroz MCA, Ligo MAV, Carvalho CS, Pires AMM, de Marcatto JOS, Andrade CA (2019) Nitrogen availability and ammonia volatilization in biochar-based fertilizers. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2019.1650916

    Article  Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol 14(9):813–822

    Google Scholar 

  • Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Environ Saf 129:120–136

    CAS  Google Scholar 

  • Rastogi N, Singh A, Sarin MM, Singh D (2016) Temporal variability of primary and secondary aerosols over northern India: impact of biomass burning emissions. Atmos Environ 125:396–403

    CAS  Google Scholar 

  • Ravi S, Sharratt BS, Li J, Olshevski S, Meng Z, Zhang J (2016) Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Sci Rep. https://doi.org/10.1038/srep35984

    Article  Google Scholar 

  • Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, Arnold S et al (2007) Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J Geophys Res Atmos. https://doi.org/10.1029/2006jd007576

    Article  Google Scholar 

  • Rong R, Zheng Y, Zhang F, Yang L, Li Z (2019) The Effects of different types of biochar on ammonia emissions during co-composting poultry manure with a corn leaf. Pol J Environ Stud 28(5):3837–3843

    Google Scholar 

  • Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate: the biological environment, 2nd edn. Wiley, New York (NY)

    Google Scholar 

  • Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci 44:269–279

    Google Scholar 

  • Santiago-De La Rosa N, González-Cardoso G, de Figueroa-Lara JJ, Gutiérrez-Arzaluz M, Octaviano-Villasana C, Ramírez-Hernández IF, Mugica-Álvarez V (2018) Emission factors of atmospheric and climatic pollutants from crop residues burning. J Air Waste Manag Assoc 68(8):849–865

    CAS  Google Scholar 

  • Sarigiannis DA, Kontoroupis P, Solomou ES, Nikolaki S, Karabelas AJ (2013) Inventory of pesticide emissions into the air in Europe. Atmos Environ 75:6–14

    CAS  Google Scholar 

  • Schmidt HP, Hagemann N, Draper K, Kammann C (2019) The use of biochar in animal feeding. PeerJ 7:e7373. https://doi.org/10.7717/peerj.7373

    Article  Google Scholar 

  • Shepherd EM, Fairchild BD (2010) Footpad dermatitis in poultry. Poult Sci 89(10):2043–2051

    CAS  Google Scholar 

  • Silva FC, Borrego C, Keizer JJ, Amorim JH, Verheijen FGA (2015) Effects of moisture content on wind erosion thresholds of biochar. Atmos Environ 123:121–128

    CAS  Google Scholar 

  • Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G (2015) Adverse effects of outdoor pollution in the elderly. J Thorac Dis 7(1):34–45

    Google Scholar 

  • Singh P, Sharratt B, Schillinger WF (2012) Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res 124:219–225

    Google Scholar 

  • Spokas KA, Novak JM, Masiello CA, Johnson MG, Colosky EC, Ippolito JA, Trigo C (2014) Physical disintegration of biochar: an overlooked process. Environ Sci Technol Lett 1(8):326–332

    CAS  Google Scholar 

  • Steiner C, Das KC, Melear N, Lakly D (2010) Reducing nitrogen loss during poultry litter composting using biochar. J Environ Qual 39(4):1236

    CAS  Google Scholar 

  • Subedi R, Kammann C, Pelissetti S, Taupe N, Bertora C, Monaco S, Grignani C (2015) Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? Eur J Soil Sci 66(6):1044–1053

    Google Scholar 

  • Sun H, Lu H, Chu L, Shao H, Shi W (2017) Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci Total Environ 575:820–825

    CAS  Google Scholar 

  • Sun X, Zhong T, Zhang L, Zhang K, Wu W (2019) Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci Total Environ 660:512–518

    CAS  Google Scholar 

  • Swart R, Amann M, Raes F, Tuinstra W (2004) A good climate for clean air: linkages between climate change and air pollution. An editorial essay. Clim Change 66(3):263–269

    Google Scholar 

  • Szogi AA, Vanotti MB, Ro KS (2015) Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollut Rep 1(1):47–56

    CAS  Google Scholar 

  • Taneepanichskul N, Gelaye B, Grigsby-Toussaint DS, Lohsoonthorn V, Jimba M, Williams MA (2018) Short-term effects of particulate matter exposure on daily mortality in Thailand: a case-crossover study. Air Qual Atmos Health 11(6):639–647

    CAS  Google Scholar 

  • Thomas N (2003) Energy. Field Guide Appropr Technol. https://doi.org/10.1016/b978-012335185-2/50046-2

    Article  Google Scholar 

  • Titiladunayo IF, McDonald AG, Fapetu OP (2012) Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3(3):311–318

    CAS  Google Scholar 

  • Van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, et al. (1999) Water, air, and soil pollution. 115:195–218. https://doi.org/10.1023/a:1005234329622

  • Vera T, Muñoz A, Ródenas M, Vázquez M, Borrás E, Marqués M, Mellouki A et al (2011) Atmospheric fate of hymexazol (5-methylisoxazol-3-ol): simulation chamber studies. Atmos Environ 45(22):3704–3710

    CAS  Google Scholar 

  • Verheijen FGA, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils: a critical scientific review on effects on soil properties, processes and functions. Joint Research Centre (JRC), Scientific and Technical Report. Office for the Official Publications of the European Communities, Luxemberg

  • Wang B, Lee X, Theng BKG, Zhang L, Cheng H, Cheng J, Lyu W (2019) Biochar addition can reduce NOx gas emissions from a calcareous soil. Chem Speciat Bioavail 31(1):38–48

    CAS  Google Scholar 

  • Wang DY, Yan DH, Song XS, Wang H (2014) Impact of biochar on water holding capacity of two chinese agricultural soil. Adv Mater Res 941–944:952–955

    Google Scholar 

  • Wang P, Yin Y, Guo Y, Wang C (2016) Preponderant adsorption for chlorpyrifos over atrazine by wheat straw-derived biochar: experimental and theoretical studies. RSC Adv 6(13):10615–10624

    CAS  Google Scholar 

  • Weinmayr G, Pedersen M, Stafoggia M, Andersen ZJ, Galassi C, Munkenast J, Jaensch A (2018) Particulate matter air pollution components and incidence of cancers of the stomach and the upper aero digestive tract in the European Study of cohorts of air pollution effects (ESCAPE). Environ Int 120:163–171

    CAS  Google Scholar 

  • WHO (2019) WHO expert consultation: risk communication and intervention to reduce exposure and to minimize the health effects of air pollution. 12–14 February 2019, WHO headquarters, Geneva, Switzerland

  • Yagi K, Minami K (1990) Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr 36(4):599–610

    CAS  Google Scholar 

  • Yang Q, Han F, Chen Y, Yang H, Chen H (2016) Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renew Sustain Energy Rev 53:1580–1590

    CAS  Google Scholar 

  • Yang X, Ali A (2019) Biochar for soil water conservation and salinization control in arid desert regions. In Ok et al. (eds) Biochar from biomass and waste, 1st edn. Elsivier, pp 161–168

  • Zeka A, Zanobetti A, Schwartz J (2005) Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med 62(10):718–725

    CAS  Google Scholar 

  • Zhang G, Zhang Q, Sun K, Liu X, Zheng W, Zhao Y (2011) Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ Pollut 159(10):2594–2601

    CAS  Google Scholar 

  • Zhang P, Sun H, Yu L, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J Hazard Mater 244–245:217–224

    Google Scholar 

  • Zhang T, Wooster MJ, Green DC, Main B (2015) New field-based agricultural biomass burning trace gas, PM 2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmos Environ 121:22–34

    CAS  Google Scholar 

  • Zhang X, Wu Y, Liu X, Reis S, Jin J, Dragosits U, Van Damme M et al (2017) Ammonia emissions may be substantially underestimated in China. Environ Sci Technol 51(21):12089–12096

    CAS  Google Scholar 

  • Zhao X, Ouyang W, Hao F, Lin C, Wang F, Han S, Geng X (2013) Properties comparison of biochars from corn straw with different pre-treatment and sorption behaviour of atrazine. Biores Technol 147:338–344

    CAS  Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181(1–3):121–126

    CAS  Google Scholar 

  • Zhou M, Liu Y, Wang L, Kuang X, Xu X, Kan H (2014) Particulate air pollution and mortality in a cohort of Chinese men. Environ Pollut 186:1–6

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all who assisted in conducting this work.

Funding

We would like to acknowledge receipt of financial support from a research grant awarded by the Rural Development Administration of the Republic of Korea under the Cooperative Research Program for the Agricultural Science & Technology Development, Project number; PJ014253022020.

Author information

Authors and Affiliations

Authors

Contributions

The idea for this review article was conceived by both Deogratius Luyima and Taek-Keun Oh, while the literature search was performed by all the authors. Deogratius Luyima drafted the manuscript under the guidance of Taek-Keun Oh. All authors reviewed the manuscript and made recommendations for improvement before a final copy for submission to the journal was completed.

Corresponding author

Correspondence to T.-K. Oh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicting interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Fatih ŞEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyima, D., Egyir, M., Lee, JH. et al. A review of the potentiality of biochar technology to abate emissions of particulate matter originating from agriculture. Int. J. Environ. Sci. Technol. 19, 3411–3428 (2022). https://doi.org/10.1007/s13762-021-03267-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03267-5

Keywords

Navigation