Skip to main content

Advertisement

Log in

Effect of Gliding Arc Plasma-Induced UV Light During the Photo-Fenton Oxidation of 4-Chlorophenol in Aqueous Solution

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

4-chlorophenol (4-CP) is recognized as a highly toxic organic which can cause damage effects on human life and the aquatic environment. Since conventional wastewater techniques were unable to remove non-biodegradable chlorophenols, advanced oxidation process was investigated to achieve this goal. Amongst them, non-thermal plasma was recently proposed as an alternative and promising technique. However, the energy efficiency of most non-thermal plasma technique is very low as well as the input energy is dissipated in many forms such as heat, UV radiation, electromagnetic waves, etc., that are not totally involved in the pollutant degradation. In this work, quantitative analyses of UV radiation and H2O2 in a moist air gliding arc plasma (glidarc) were performed using potassium ferrioxalate actinometry and peroxytitanyl complex method, respectively. The role of UV light emitted in gliding arc plasma was elucidated by performing parallel experiments: H2O2, glidarc alone, glidarc + H2O2, glidarc + H2O2 + Fe3+ (plasma-Photo-Fenton). The results show that the incorporation of Fenton reagents in 4-CP solution exposed to the plasma enhanced the yields of chemical active species, which were available for efficient removal and mineralization of 4-CP.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou T, Li Y, Ji J, Wong FS, Lu X (2008) Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors. Sep Purif Technol 62:551–558

    Article  CAS  Google Scholar 

  2. Wang M, Fang G, Liu P, Zhou D, Ma C, Zhang D, Zhan J (2016) Fe3O4@β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Appl Catal B Environ 188:113–122

    Article  CAS  Google Scholar 

  3. Kennedy LJ, Vijaya JJ, Kayalvizhi K, Sekaran G (2007) Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chem Eng J 132:279–287

    Article  CAS  Google Scholar 

  4. Keith LH, Telliard WA (1979) Priority pollutants. I. A perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  5. Johnson I, Atkinson C, Hope S-J, Sorokin N (2007) Proposed EQS for Water Framework Directive Annex VIII substances: 2,4-dichlorophenol.

  6. Tarkwa JB, Oturan N, Acayanka E, Laminsi S, Oturan MA (2019) Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism. Environ Chem Lett 17:473–479

    Article  CAS  Google Scholar 

  7. Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82:1422–1430

    Article  CAS  PubMed  Google Scholar 

  8. Monteagudo JM, Durán A, López-Almodóvar C (2008) Homogeneus ferrioxalate-assisted solar photo-Fenton degradation of Orange II aqueous solutions. Appl Catal B Environ 82:46–55

    Article  Google Scholar 

  9. Alalm MG, Tawfik A, Ookawara S (2015) Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng 3:46–51

    Article  CAS  Google Scholar 

  10. Huston PL, Pignatello JJ (1999) Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res 33:1238–1246

    Article  CAS  Google Scholar 

  11. Pignatello JJ, Sun Y (1995) Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. Water Res 29:1837–1844

    Article  CAS  Google Scholar 

  12. Evgenidou E, Konstantinou I, Fytianos K, Poulios I (2007) Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction. Water Res 41:2015–2027

    Article  CAS  PubMed  Google Scholar 

  13. Pignatello JJ, Chapa G (1994) Degradation of PCBs by ferric ion, hydrogen peroxide and UV light. Environ Toxicol Chem 13(3):423–427

    Article  CAS  Google Scholar 

  14. Ruppert G, Bauer R, Heisler G (1993) The photo-Fenton reaction—an effective photochemical wastewater treatment process. J Photochem Photobiol A Chem 73:75–78

    Article  CAS  Google Scholar 

  15. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368

    Article  CAS  Google Scholar 

  16. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JG, Graham WG, Graves DB, Hofman-Caris RC, Maric D, Reid JP, Ceriani E, Rivas DF (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002–17

    Article  Google Scholar 

  17. Du CM, Yan JH, Cheron BG (2007) Degradation of 4-Chlorophenol using a gas-liquid gliding arc discharge plasma reactor. Plasma Chem Plasma Process 27:635–646

    Article  CAS  Google Scholar 

  18. Burlica R, Kirkpatrick MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrostat 64:35–43

    Article  CAS  Google Scholar 

  19. Burlica R, Shih KY, Locke BR (2010) Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor. Ind Eng Chem Res 49:6342–6349

    Article  CAS  Google Scholar 

  20. Benstaali B, Moussa D, Addou A, Brisset JL (1998) Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. Eur Phys J Appl Phys 4:171–179

    Article  CAS  Google Scholar 

  21. Moussa D, Abdelmalek F, Benstaali B, Addou A, Hnatiuc E, Brisset JL (2005) Acidity control of the gliding arc treatments of aqueous solutions: application to pollutant abatement and biodecontamination. Eur Phys J Appl Phys 29:189–199

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhou M, Lei L (2007) Degradation of 4-chlorophenol in different gas-liquid electrical discharge reactors. Chem Eng J 132:325–333

    Article  CAS  Google Scholar 

  23. Robinson JW, Ham M, Balaster AN (1973) Ultraviolet radiation from electrical discharges in water. J Appl Phys 44:72–75

    Article  CAS  Google Scholar 

  24. Willberg DM, Lang PS, Höchemer RH, Kratel A, Hoffmann MR (1996) Degradation of 4-chlorophenol, 3, 4-dichloroaniline, and 2, 4, 6-trinitrotoluene in an electrohydraulic discharge reactor. Environ Sci Technol 30:2526–2534

    Article  CAS  Google Scholar 

  25. Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi I, Kop’ev V, Silakov VP, Taktakishvili MI, Temchin SM (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D Appl Phys 34:993

    Article  CAS  Google Scholar 

  26. Simon A, Anghel SD, Papiu M, Dinu O (2010) Physical and analytical characteristics of an atmospheric pressure argon-helium radiofrequency capacitively coupled plasma. Spectrochim Acta Part B At Spectrosc 65:272–278

    Article  Google Scholar 

  27. Jo YK, Cho J, Tsai TC, Staack D, Kang MH, Roh JH, Shin DB, Cromwell W, Gross D (2014) A non-thermal plasma seed treatment method for management of a seedborne fungal pathogen on rice seed. Crop Sci 54:796–803

    Article  CAS  Google Scholar 

  28. Subrahmanyam C, Magureanu M, Laub D, Renken A, Kiwi-Minsker L (2007) Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. J Phys Chem C 111:4315–4318

    Article  CAS  Google Scholar 

  29. Gharagozalian M, Dorranian D, Ghoranneviss M (2017) Water treatment by the AC gliding arc air plasma. J Theor Appl Phys 11:171–180

    Article  Google Scholar 

  30. Acayanka E, Kuete DS, Kamgang GY, Nzali S, Laminsi S, Ndifon PT (2016) Synthesis, characterization and photocatalytic application of TiO2/SnO2 nanocomposite obtained under non-thermal plasma condition at atmospheric pressure. Plasma Chem Plasma Process 36:799–811

    Article  CAS  Google Scholar 

  31. Tarkwa JB, Acayanka E, Jiang B, Oturan N, Kamgang GY, Laminsi S, Oturan MA (2019) Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma. Appl Catal B Environ 246:211–220

    Article  CAS  Google Scholar 

  32. Marković MD, Dojčinović BP, Obradović BM, Nešic J, Natić MM, Tosti TB, Kuraic MM, Manojlović DD (2015) Degradation and detoxification of the 4-chlorophenol by non-thermal plasma-influence of homogeneous catalysts. Sep Purif Technol 154:246–254

    Article  Google Scholar 

  33. Czernichowski A (2001) Glidarc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil Gas Sci Technol 56:181–198

    Article  CAS  Google Scholar 

  34. Du CM, Yan JH, Cheron B (2007) Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci Technol 16:791–797

    Article  CAS  Google Scholar 

  35. Lukes P, Clupek M, Babicky V, Sunka P (2008) Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Sci Technol 17:024012

    Article  Google Scholar 

  36. Calvert JG, Pitts JN (1967) Experimental methods in photochemistry Photochemistry. Wiley, New York, pp 686–814

    Google Scholar 

  37. Furman NH (1962) Iron standard methods of chemical analysis, vol 1. Van Nostrand, Princeton, pp 529–555

    Google Scholar 

  38. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide Ind. Eng Chem Anal Edn 15:327–328

    Article  CAS  Google Scholar 

  39. Acayanka E, Tarkwa JB, Laminsi S (2019) Evaluation of energy balance in a batch and circulating non-thermal plasma reactors during organic pollutant oxidation in aqueous solution. Plasma Chem Plasma Process 39:75–87

    Article  CAS  Google Scholar 

  40. Thompson BA, Harteck P, Reeves RRJR (1963) Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2 and CH4 between 1850 and 4000 A. J Geophys Res 68:6431–6433

    Article  CAS  Google Scholar 

  41. Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2010) Parametric study on the effect of the ratios [H2O2]/[Fe3+] and [H2O2]/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41. J Environ Sci Heal Part A 45(5):622–629

    Article  CAS  Google Scholar 

  42. Khandelwal DH, Ameta R (2013) Use of photo-fenton reagent for the degradation of Basic Orange 2 in aqueous medium. J Chem Pharm Res 2:39–43

    CAS  Google Scholar 

  43. Du Y, Fu QS, Li Y, Su Y (2011) Photodecomposition of 4-chlorophenol by reactive oxygen species in UV/air system. J Hazard Mater 186:491–496

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Wu JY, Kang CL, Peng F, Liu HF, Yang T, Shi L, Wang HL (2013) Photo-Fenton effect of 4-chlorophenol in ice. J Hazard Mater 261:500–511

    Article  CAS  PubMed  Google Scholar 

  45. Bian W, Song X, Liu D, Zhang J, Chen X (2011) The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water. J Hazard Mater 192:1330–1339

    Article  CAS  PubMed  Google Scholar 

  46. Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J (2010) Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environ Sci Technol 44:263–268

    Article  CAS  PubMed  Google Scholar 

  47. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  PubMed  Google Scholar 

  48. Borer P, Hug SJ (2014) Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. J Colloid Interface Sci 416:44–53

    Article  CAS  PubMed  Google Scholar 

  49. Baba Y, Yatagai T, Harada T, Kawase Y (2015) Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling. Chem Eng J 277:229–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the International Foundation for Sciences (IFS) (Grant Number: W/4219-1) for the Jenway spectrophotometer granted to SN

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Tarkwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkwa, JB., Acayanka, E., Sop, B.T. et al. Effect of Gliding Arc Plasma-Induced UV Light During the Photo-Fenton Oxidation of 4-Chlorophenol in Aqueous Solution. Plasma Chem Plasma Process 41, 989–1007 (2021). https://doi.org/10.1007/s11090-021-10171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10171-w

Keywords

Navigation