Skip to main content
Log in

Fluctuation-Induced Phase Transitions and Skyrmions in Strongly Correlated Fe1 – xCoxSi with a Disturbed Crystal B20-Type Structure

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The concentration and temperature transitions in strongly correlated Fe1 – xCoxSi alloys with the Dzyaloshinski–Moriya (DM) interaction are considered in terms of the spin-fluctuation theory taking into account the results of LDA + U + SO calculations of the density of electronic states. It is shown that the concentration order–order transitions with change in the sign of the left spin chirality (at x < 0.2) to the right that (at x ≤ 0.2x < 0.65, and again to the left chirality at x ≥ 0.65 are related to the change in the sign of the parameter of the mode–mode interaction. It is also shown that, in the composition range of Fe1 – xCoxSi with 0.2 ≤ x < 0.65, the first-order transitions extended in temperature arise, accompanied by the appearance of an intermediate temperature range of the spin short-range order with a noncompensated local magnetization and the DM interaction. In an external magnetic field, in this temperature range at 0.2 ≤ x < 0.65, skyrmion microstructures arise. At x = 0.65, the mode–mode interaction parameter becomes be zero, the long-range order becomes ferromagnetic (since the experiment demonstrates the compensation of the DM interaction), and a temperature second-order transition appears instead of the extended first-order transition. The (hT) diagrams of magnetic states of Fe1 – xCoxSi have been constructed; they agree with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. As the sign of d is changed, the described conditions of the realization of the left or right magnetic chirality are changed to opposite.

REFERENCES

  1. J. Beille, J. Voiron, F. Towfiq, M. Roth, and Z. Y. Zhang, J. Phys. F 11, 2153 (1981).

    Article  ADS  Google Scholar 

  2. S. V. Grigoriev, V. A. Dyadkin, S. V. Maleyev, D. Menzel, J. Schoenes, D. Lamago, E. V. Moskvin, and H. Eckerlebe, Phys. Solid State 52, 907 (2010).

    Article  ADS  Google Scholar 

  3. S.-A. Siegfried, E. V. Altynbaev, N. M. Chubova, V. Dyadkin, D. Chernyshov, E. V. Moskvin, D. Menzel, A. Heinemann, A. Schreyer, and S. V. Grigoriev, Phys. Rev. B 91, 184406 (2015).

    Article  ADS  Google Scholar 

  4. J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos, R. Duine, S. Blugel, J. Sinova, and Y. Mokrousov, arXiv:1503.04842v1 [cond-mat.mtrl-sci].

  5. A. A. Povzner, A. G. Volkov, and T. M. Nuretdinov, Phys. Solid State 62, 873 (2020).

    Article  ADS  Google Scholar 

  6. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, and Y. Tokura, Phys. Rev. B 72, 224431 (2005).

    Article  ADS  Google Scholar 

  7. E. Altynbaev, S.-A. Siegfried, E. Moskvin, D. Menzel, C. Dewhurst, A. Heinemann, A. Feoktystov, L. Fomicheva, A. Tsvyashchenko, and S. Grigoriev, Phys. Rev. B 94, 174403 (2016).

    Article  ADS  Google Scholar 

  8. G. J. Li, E. K. Liu, H. G. Zhang, Y. J. Zhang, J. L. Chen, W. H. Wang, H. W. Zhang, G. H. Wu, and S. Y. Yu, arXiv: 1211.6815v1 [cond-mat.mtrl-sci].

  9. A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. B 93, 235144 (2016).

    Article  ADS  Google Scholar 

  10. A. A. Povzner, A. G. Volkov, T. A. Nogovitsyna, and S. A. Bessonov, Phys. Solid State 62, 92 (2020).

    Article  ADS  Google Scholar 

  11. I. E. Dzyaloshinskii and P. S. Kondratenko, Sov. Phys. JETP 43, 1036 (1976).

    ADS  Google Scholar 

  12. J. Hubbard, Proc. R. Soc. A 276, 238 (1963).

    ADS  Google Scholar 

  13. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Book  Google Scholar 

  14. A. A. Povzner, A. G. Volkov, T. M. Nuretdinov, and T. A. Nogovitsyna, Phys. Solid State 60, 1924 (2018).

    Article  ADS  Google Scholar 

  15. A. A. Povzner, A. G. Volkov, and T. A. Nogovitsyna, Phys. Solid State 60, 230 (2018).

    Article  ADS  Google Scholar 

  16. T. Y. Ou-Yang, G. J. Shu, C. D. Hu, and F. C. Chou, J. Appl. Phys. 117, 123903 (2015).

    Article  ADS  Google Scholar 

  17. L. J. Bannenberg, K. Kakurai, F. Qian, E. Lelievre-Berna, C. D. Dewhurst, Y. Onose, Y. Endoh, Y. Tokura, and C. Pappas, Phys. Rev. B 94, 104406 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, state task FEUZ-2020-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Povzner.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povzner, A.A., Volkov, A.G., Nogovitsyna, T.A. et al. Fluctuation-Induced Phase Transitions and Skyrmions in Strongly Correlated Fe1 – xCoxSi with a Disturbed Crystal B20-Type Structure. Phys. Solid State 63, 377–385 (2021). https://doi.org/10.1134/S1063783421030148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421030148

Keywords:

Navigation