Skip to main content
Log in

A Straightforward Model for Molar Enthalpy Prediction of CsO, CsF, and CsCl Molecules Via Shifted Tietz-Wei Potential

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report a four-parameter analytical representation to target the prediction of the molar enthalpy of gaseous diatomic molecule substances. The predicted molar enthalpy is in excellent agreement with the experimental data in a wide range of temperature for CsO, CsF, and CsCl molecules. In the temperature range from 100 to 6000 K, the average relative deviations of the predicted values from the National Institute of Standards and Technology database are 1.72\(\%\), 1.52\(\%\) , and 2.86\(\%\) for CsO, CsF, and CsCl molecules, respectively. The present model requires only to know the experimental values of four parameters which are dissociation energy, equilibrium vibrational frequency, equilibrium bond length, and the reduced molecular mass. It represents a satisfactory compromise between accuracy and rapid computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E. Ylmaz, E. Sert, F.S. Atalay, J. Taiwan Inst. Chem. Eng. 65, 323–330 (2016)

    Article  Google Scholar 

  2. M. Murialdo, C.C. Ahn, B. Fultz, AIChE J. 64, 1026–1033 (2018)

    Article  Google Scholar 

  3. T.X. Li, R.Z. Wang, J.K. Kiplagat, L.W. Wang, R.G. Oliveira, Chem. Eng. Sci. 64, 3376–3384 (2009)

    Article  Google Scholar 

  4. T.F.T. Rexer, M.J. Benham, A.C. Aplin, K.M. Thomas, Energy Fuels 27, 3099–3109 (2013)

    Article  Google Scholar 

  5. P. Ammendola, F. Raganati, R. Chirone, Chem. Eng. J. 322, 302–313 (2017)

    Article  Google Scholar 

  6. E. Peduzzi, G. Boissonnet, F. Marchal, Fuel 181, 207–217 (2016)

    Article  Google Scholar 

  7. I. Janajreh, S.S. Raza, A.S. Valmundsson, Energy Convers. Manag. 65, 801–809 (2013)

    Article  Google Scholar 

  8. M.H. Taheri, A.H. Mosaffa, L.G. Farshi, Energy 125, 162–177 (2017)

    Article  Google Scholar 

  9. G.J. Kabo, Y.U. Paulechka, D.H. Zaitsau, A.S. Firaha, Thermochim. Acta 609, 7–19 (2015)

    Article  Google Scholar 

  10. O. Ershova, J.P. Pokki, A. Zaitseva, V. Alopaeus, H. Sixta, Chem. Eng. Sci. 176, 19–34 (2018)

    Article  Google Scholar 

  11. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  12. N. Rosen, P.M. Morse, Phys. Rev. 42, 1932 (1933)

    Google Scholar 

  13. M.F. Manning, N. Rosen, Phys. Rev. 44, 1951 (1933)

    Google Scholar 

  14. G. Poschl, E. Teller, Z. Phys. 83, 143 (1933)

    Article  ADS  Google Scholar 

  15. A.A. Frost, B. Musulin, J. Chem. Phys. 22, 1017 (1954)

    Article  ADS  Google Scholar 

  16. Z.H. Deng, Y.P. Fan, Shandong Univ. J. 7, 162 (1957)

    Google Scholar 

  17. T. Tietz, J. Chem. Phys. 38, 3036 (1963)

    Article  ADS  Google Scholar 

  18. D. Schiberg, Mol. Phys. 59, 1123 (1986)

    Article  ADS  Google Scholar 

  19. H. Wei, Phys. Rev. A 42, 2524 (1990)

    Article  ADS  Google Scholar 

  20. N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)

    Article  ADS  Google Scholar 

  21. M.F. Manning, N. Rosen, Phys. Rev. 44, 953 (1933)

    Google Scholar 

  22. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  23. X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50–55 (2017)

    Article  ADS  Google Scholar 

  24. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150–153 (2017)

    Article  ADS  Google Scholar 

  25. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, J.-Y. Liu, Y. Xiong, R. Zenga, Chem. Phys. Lett. 692, 57–60 (2018)

    Article  ADS  Google Scholar 

  26. R. Jiang, C.-S. Jia, Y.-Q. Wang, X.-L. Peng, L.-H. Zhang, Chem. Phys. Lett. 715, 186–189 (2019)

    Article  ADS  Google Scholar 

  27. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Article  Google Scholar 

  28. C.-S. Jia, R. Zeng, X.-L. Peng, L.-H. Zhang, Y.-L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Article  Google Scholar 

  29. C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.-D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Article  Google Scholar 

  30. R. Jiang, C.-S. Jia, Y.-Q. Wang, X.-L. Peng, L.-H. Zhang, Chem. Phys. Lett. 726, 83–86 (2019)

    Article  ADS  Google Scholar 

  31. X. Yu Chen, J. Li, C.S. Jia, ACS Omega 4, 16121–16124 (2019)

    Article  Google Scholar 

  32. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193–19198 (2019)

    Article  Google Scholar 

  33. C.S. Jia, Y.T. Wang, L.S. Wei, C.W. Wang, X.L. Peng, L.H. Zhang, ACS Omega 4, 20000–20004 (2019)

    Article  Google Scholar 

  34. R. Horchani, H. Jelassi, S. Afr. J. Chem. Eng. 33, 103–106 (2020)

    Google Scholar 

  35. R. Horchani, H. Jelassi, Chem. Phys. Lett. 753, 137583 (2020)

    Article  Google Scholar 

  36. F. Caristo, AECL Report 7782 Atomic Energy of Canada Ltd., (1983)

  37. Wei Hua, Phys. Rev. A 42, 5 (1990)

    Google Scholar 

  38. S. Kaur, C.G. Mahajan, PRAMANA. J. Phys. 52(4), 409–420 (1999)

    Google Scholar 

  39. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (2017). (http://webbook.nist.gov/chemistry/)

  40. J. Garca-Martnez, J. Garca-Ravelo, J. Morales, J.J. Pea, Int. J. Quantum Chem. 112, 195 (2012)

    Article  Google Scholar 

  41. J.J. Pea, J. Garca-Martnez, J. Garca-Ravelo, J. Morales, Int. J. Quant. Chem. 115, 158 (2015)

    Article  Google Scholar 

  42. G. Ovando, J.J. Pea, J. Morales, Theor. Chem. Acc. 135, 62 (2016)

    Article  Google Scholar 

  43. H. Yanar, A. Havare, Adv. High Energy Phys. 2015, 915796 (2015)

    Article  Google Scholar 

  44. H. Yanar, O. Aydogdu, M. Salti, Mol. Phys. 114, 3134 (2016)

    Article  ADS  Google Scholar 

  45. A. Tas, A. Havare, Few-Body Syst. 59, 52 (2018)

    Article  Google Scholar 

  46. A. Tas, A. Havare, Chin. Phys. B 26, 100301 (2017)

    Article  ADS  Google Scholar 

  47. O. Mustafa, J. Phys. B 48, 065101 (2015)

    Article  ADS  Google Scholar 

  48. D. Steele, E.R. Lippincott, J.T. Vanderslice, Rev. Mod. Phys. 34, 239 (1962)

    Article  ADS  Google Scholar 

  49. Y.P. Varshni, Revs. Mod. Phys. 29, 664 (1957)

    Article  ADS  Google Scholar 

  50. C.I. Pekeris, Phys. Rev. 43, 98 (1934)

    Article  ADS  Google Scholar 

  51. M.L. Strekalov, Chem. Phys. Lett. 439, 209 (2007)

    Article  ADS  Google Scholar 

  52. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Gibbs free energies of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 122–125 (2018)

    Article  Google Scholar 

  53. F. Schwabl, Statistical Mechanics, 2nd edn. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  54. Diana Kaeen, Mahmoud Korek, Saleh Nabhan Abdulal, J. Modern Phys. 6, 1889–1894 (2015)

    Article  ADS  Google Scholar 

  55. M. Badawi, B. Xerri, S. Canneaux, L. Cantrel, F. Louis, J. Nucl. Mater. 420(1), 452–462 (2012)

    Article  ADS  Google Scholar 

  56. C.J. Schexnayder, Tabulated Values of Bond Dissociation Energies, Ionization Potentials, and Electron Affinities for Some Molecules Found in High-Temperature Chemical Reactions (National Aeronautics and Space Administration, Washington, 1963)

    Google Scholar 

  57. R. Horchani, H. Jelassi, Chem. Phys. 532, 110692 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Horchani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horchani, R., Shafii, S.A., Friha, H. et al. A Straightforward Model for Molar Enthalpy Prediction of CsO, CsF, and CsCl Molecules Via Shifted Tietz-Wei Potential. Int J Thermophys 42, 84 (2021). https://doi.org/10.1007/s10765-021-02839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02839-4

Keywords

Navigation