Skip to main content
Log in

Theoretical and Experimental Investigation of the Performance of an Atkinson Cycle Engine

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, an Otto cycle engine was converted to the Atkinson cycle engine using the method of late intake valve closing and increasing the compression ratio. Firstly, the thermodynamic analysis was conducted. In the analysis, the variation of specific heats with temperature, heat losses, pumping, and mechanical friction losses was taken into account. In-cylinder pressure variations, torque, power, thermal efficiency and brake-specific fuel consumption variations with speed were obtained. For the experimental study, a new camshaft was designed and manufactured using a circular arc curve. The IVC timing of the Atkinson engine was delayed by a 20° crankshaft angle with respect to standard timing. The compression ratio was increased from 8.5 to 9.5. Tests were conducted at 1400–3400 rpm speed range at WOT. Experiments were conducted at three different operating conditions: Otto cycle for the standard engine, late closing of the intake valve at 20 ° CA at 8.5 compression ratio and late closing of the intake valve at 20 ° CA at 9.5 compression ratio. In the tests, the variation of torque, power, BSFC and thermal efficiency with speed were investigated. The results showed that torque, power, BSFC and thermal efficiency were improved with Atkinson CR9.5 operation compared to the standard Otto cycle operation at high speeds. It was obtained that the torque and power of the Atkinson CR9.5 cycle engine increased by 6.7% and the thermal efficiency increased by 12.8% at 3400 rpm speeds. In addition, BSFC of the Atkinson CR9.5 engine decreased by 12.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BDC :

Bottom dead center

CA :

Crank angle

CR :

Compression ratio

EDM :

Electrical discharge machining

EVC :

Exhaust valve closing

EVO :

Exhaust valve opening

Exp. :

Experimental

IVC :

Intake valve closing

IVO :

Intake valve opening

LIVC :

Late intake valve closing

TDC :

Top dead center

WOT :

Wide open throttle

\(A\) :

Area of the piston (m2)

BSFC :

Brake-specific fuel consumption (g/kWh)

\(D\) :

Cylinder bore (m)

\(f_{c}\) :

The mass of fuel burned per cycle (kg)

\(h_{c}\) :

Coolant side convective heat transfer coefficient (W/m2K)

\(h_{g}\) :

Gas side convective heat transfer coefficient (W/m2K)

\(Hu\) :

Lower heating value (kJ/kg)

\(k_{c}\) :

Thermal conductivity of the cylinder (W/mK)

\(L_{b}\) :

Length of connecting rod (m)

\(L_{c}\) :

Piston stroke (m)

\(M_{e}\) :

Engine torque (Nm)

\(\dot{m}_{f}\) :

The mass flow rate of fuel (g/h)

\(n\) :

Engine speed (rpm)

\(n_{k}\) :

Polytropic exponent

\(\dot{Q}\) :

Heat transfer rate (W)

\(P\) :

Pressure (kPa)

\(P_{e}\) :

Output power (kW)

\(P_{m}\) :

Mean cycle pressure (kPa)

\(R_{c}\) :

Crank radius (m)

\(T\) :

Temperature (K)

\(U\) :

Average gas velocity in the cylinder (m/s)

\(V\) :

Volume (m3)

\(V_{s}\) :

Stroke volume (m3)

\(W\) :

Work (kJ)

\(X_{y}\) :

Percentage of fuel burned (%)

\(\eta_{t}\) :

Thermal efficiency (%)

\(\theta\) :

Crankshaft angle (°)

\(\theta_{0}\) :

The crank angle at the start of combustion (°)

\(\Delta \theta\) :

Combustion duration (°CA)

\(\Delta x\) :

Wall thickness of cylinder (m)

References

  1. Fu, J.; Liu, J.; Yang, Y.; Ren, C.; Zhu, G.: A new approach for exhaust energy recovery of internal combustion engine: steam turbocharging. Appl. Therm. Eng. 52(1), 150–159 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.035

    Article  Google Scholar 

  2. He, X.; Durrett, R.P.; Sun, Z.: Late intake valve closing as an emissions control strategy at tier 2 bin 5 engine-out NOx level. SAE Int. J. Engines 1(1), 427–443 (2009). https://doi.org/10.4271/2008-01-0637

    Article  Google Scholar 

  3. Wang, F.; Saito, M.: Evaluating the efficiency of green vehicles and diesel vehicles. Int. J. Green Energy 13(11), 1163–1174 (2016). https://doi.org/10.1080/15435075.2016.1183206

    Article  Google Scholar 

  4. Tariq, S.L.; Ali, H.M.; Akram, M.A.; Janjua, M.M.; Ahmadlouydarab, M.: Nanoparticles enhanced phase change materials (NePCMs) - a recent review. Appl. Therm. Eng. 176, 115305 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115305

    Article  Google Scholar 

  5. Hassan, A.; Wahab, A.; Qasim, M.A.; Janjua, M.M.; Ali, M.A.; Ali, H.M.; Jadoon, T.R.; Ali, E.; Raza, A.; Javaid, N.: Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy 145, 282–293 (2020). https://doi.org/10.1016/j.renene.2019.05.130

    Article  Google Scholar 

  6. JAMA: The motor industry of Japan, Japan Automobile Manufacturers Association, Tokyo (2017)

  7. Fu, J.; Liu, J.; Feng, R.; Yang, Y.; Wang, L.; Wang, Y.: Energy and exergy analysis on gasoline engine based on mapping characteristics experiment. Appl. Energy 102, 622–630 (2013). https://doi.org/10.1016/j.apenergy.2012.08.013

    Article  Google Scholar 

  8. Fu, J.; Liu, J.; Wang, Y.; Deng, B.; Yang, Y.; Feng, R.; Yang, J.: A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery. Appl. Energy 113, 248–257 (2014). https://doi.org/10.1016/j.apenergy.2013.07.023

    Article  Google Scholar 

  9. Martins, J.J.G.; Uzuneanu, K.; Ribeiro, B.S.; Jasasky, O.: Thermodynamic analysis of an over-expanded engine. SAE Techn. Paper (2004). https://doi.org/10.4271/2004-01-0617

    Article  Google Scholar 

  10. Watanabe, S.; Koga, H.; Kono, S.: Research on extended expansion general purpose engine theoretical analysis of multiple linkage system and improvement of thermal efficiency. SAE Techn. Paper (2006). https://doi.org/10.4271/2006-32-0101

    Article  Google Scholar 

  11. Mallikarjuna, J.M.; Ganesan, V.: Theoretical and experimental investigations of extended expansion concept for SI engines. SAE Tech. Paper (2002). https://doi.org/10.4271/2002-01-1740

    Article  Google Scholar 

  12. Gheorghiu, V.: Ultra-downsizing of internal combustion engines. SAE Tech. Paper (2011). https://doi.org/10.4271/2011-28-0049

    Article  Google Scholar 

  13. Fontana, G.; Galloni, E.: Variable valve timing for fuel economy improvement in a small spark ignition engine. Appl. Energy 86(1), 96–105 (2009). https://doi.org/10.1016/j.apenergy.2008.04.009

    Article  Google Scholar 

  14. Li, H.; Karim, G.A.: Exhaust emissions from a gas-fueled S.I. engine. Int. J. Green. Energy 2(1), 129–145 (2005). https://doi.org/10.1081/GE-200051319

    Article  Google Scholar 

  15. Ozsezen, A.N.: The Investigation of thermodynamics and combustion properties of alcohol-gasoline blends in an SI engine. Int. J. Green Energy 12(11), 1107–1112 (2015). https://doi.org/10.1080/15435075.2014.892877

    Article  Google Scholar 

  16. Chockalingam, S.R.; Kumar, M.; Pauldoss, P.: Effective application of ethanol in diesel engines. Int. J. Green Energy 14(12), 1027–1033 (2017). https://doi.org/10.1080/15435075.2017.1354300

    Article  Google Scholar 

  17. Miklanek, L.; Vitek, O.; Gotfryd, O.; Klir, V.: Study of unconventional cycles (Atkinson and Miller) with mixture heating as a means for the fuel economy improvement of a throttled SI engine at part load. SAE Int. J. Engines 5, 1624–1636 (2012). https://doi.org/10.4271/2012-01-1678

    Article  Google Scholar 

  18. Pertl, P.; Trattner, A.; Abis, A.; Schmidt, S.; Kirchberger, R.; Sato, T.: Expansion to higher efficiency-investigations of the Atkinson cycle in small combustion engines. SAE Tech. Paper (2012). https://doi.org/10.4271/2012-32-0059

    Article  Google Scholar 

  19. Feng, R.; Li, Y.; Yang, J.; Fu, J.; Zhang, D.; Zheng, G.: Investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine. SAE Tech. Paper (2016). https://doi.org/10.4271/2016-01-0680

    Article  Google Scholar 

  20. Zhao, J.: Research and application of over-expansion cycle (Atkinson and Miller) engines-a review. Appl. Energy 185, 300–319 (2017). https://doi.org/10.1016/j.apenergy.2016.10.063

    Article  Google Scholar 

  21. Atkinson, J.: Atkinson engine. US Patent, 367496 (1887)

  22. Boretti, A.; Masudi, H.; Scalzo, J.: Alternative crankshaft mechanisms and kinetic energy recovery systems for improved fuel economy of light duty vehicles. SAE Techn. Paper (2011). https://doi.org/10.4271/2011-01-2191

    Article  Google Scholar 

  23. Kentfield, J.A.C.: Extended, and variable, stroke reciprocating internal combustion engines. SAE Tech. Paper (2002). https://doi.org/10.4271/2002-01-1941

    Article  Google Scholar 

  24. Zhao, J.; Xu, M.; Li, M.; Wang, B.; Liu, S.: Design and optimization of an Atkinson cycle engine with the artificial neural network method. Appl. Energy 92, 492–502 (2012). https://doi.org/10.1016/j.apenergy.2011.11.060

    Article  Google Scholar 

  25. Ebrahimi, R.: Thermodynamic modeling of an Atkinson cycle with respect to relative air fuel ratio, fuel mass flow rate and residual gases. Acta Phys. Pol., A 124, 29–34 (2013). https://doi.org/10.12693/APhysPolA.124.29

    Article  Google Scholar 

  26. Li, Y.; Wang, S.; Duan, X.; Liu, S.; Liu, J.; Hu, S.: Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins. Energy Convers. Manage. 230, 113788 (2021). https://doi.org/10.1016/j.enconman.2020.113788

    Article  Google Scholar 

  27. Qingyu, N.; Baigang, S.; Dongsheng, Z.; Qinghe, L.: Research on performance optimization and fuel-saving mechanism of an Atkinson cycle gasoline engine at low speed and part load. Fuel 265, 117010 (2020). https://doi.org/10.1016/j.fuel.2020.117010

    Article  Google Scholar 

  28. Ozdemir, A.O.: Performance analysis of Atkinson cycle in an internal combustion engine. Thesis, Gazi University, Ankara, M.Sc (2014).

    Google Scholar 

  29. Wang, C.; Daniel, R.; Xu, H.: Research of the Atkinson cycle in the spark ignition engine. SAE Techn. Paper (2012). https://doi.org/10.4271/2012-01-0390

    Article  Google Scholar 

  30. Boretti, A.; Scalzo, J.: Exploring the advantages of Atkinson effects in variable compression ratio turbo GDI engines. SAE Tech. Paper (2011). https://doi.org/10.4271/2011-01-0367

    Article  Google Scholar 

  31. Li, Y.; Khajepour, A.; Devaud, C.: Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Appl. Energy 222, 199–215 (2018). https://doi.org/10.1016/j.apenergy.2018.04.012

    Article  Google Scholar 

  32. Hou, S.: Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations. Energy Convers. Manage. 48(5), 1683–1690 (2007). https://doi.org/10.1016/j.enconman.2006.11.001

    Article  Google Scholar 

  33. Pertl, P.; Trattner, A.; Stelzl, R.; Lang, M.; Schmidt, S.; Kirchberger, R.: Expansion to higher efficiency-experimental investigations of the Atkinson cycle in small combustion engines. JSAE/SAE 2015 Small Engine Tech. Conf. Exhib. 2015-32-0809 (2015)

  34. Manivannan, A.: Numerical and experimental study of extended expansion concept applied to lean burn spark ignition engine. Ann. Fac. Eng. Hunedoara-Int. J. Eng. 9(2), 37–42 (2011)

    Google Scholar 

  35. Benajes, J.; Serrano, J.R.; Molina, S.; Novella, R.: Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine. Energy Convers. Manage. 50(1), 174–183 (2009). https://doi.org/10.1016/j.enconman.2008.08.034

    Article  Google Scholar 

  36. Ge, Y.; Chen, L.; Sun, F.; Wu, C.: Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid. Appl. Energy 83(11), 1210–1221 (2006). https://doi.org/10.1016/j.apenergy.2005.12.003

    Article  Google Scholar 

  37. Oh, S.; Cho, S.; Seol, E.; Song, C.; Shin, W.; Min, K.; Song, H.H.; Lee, B.; Son, J.; Woo, S.H.: An experimental study on the effect of stroke-to-bore ratio of Atkinson DISI engines with variable valve timing. SAE Tech. Paper (2018). https://doi.org/10.4271/2018-01-1419

    Article  Google Scholar 

  38. Karamangil, M.I.; Kaynakli, O.; Surmen, A.: Parametric investigation of cylinder and jacket side convective heat transfer coefficients of gasoline engines. Energy Convers. Manage. 47(6), 800–816 (2006). https://doi.org/10.1016/j.enconman.2005.05.018

    Article  Google Scholar 

  39. Gulcan, H.E.: Conversion of Otto cycle spark ignition engine to Atkinson cycle and tests. Thesis, Gazi University, Ankara, M.Sc (2018).

    Google Scholar 

  40. Holst, F.; Solbreck, M.: Numerical and experimental investigation of the Atkinson cycle on a 2.0 liter 4-cylinder turbocharged SI-engine. Master’s Thesis, Chalmers University of Technology, Goteborg, Sweden (2014)

  41. Boggs, D.L.; Hilbert, H.S.; Schechter, M.M.: The Otto-Atkinson cycle engine-fuel economy and emissions results and hardware design. SAE Techn. Paper (1995). https://doi.org/10.4271/950089

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Cinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cinar, C., Ozdemir, A.O., Gulcan, H.E. et al. Theoretical and Experimental Investigation of the Performance of an Atkinson Cycle Engine. Arab J Sci Eng 46, 7841–7850 (2021). https://doi.org/10.1007/s13369-021-05595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05595-7

Keywords

Navigation