Skip to main content

Advertisement

Log in

New Design Approach of a “2.4 GHz” Slotted Rectangular Patch Antenna with a Wideband Harmonic Suppression

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The designing of an antenna with a wideband harmonic suppression will lead to enhance the overall antenna performance efficiency as well as neglecting electromagnetic noises. A “defective ground superimposing” or a Y-slot construct confederated with a ring hopefully meets an effective approach that is exploited in removing high level of harmonics in the design process. A “2.4 GHz” rectangular U-slot microstrip patch antenna with an active antenna radiators and harmonic suppression grid has been presented. The paper focuses on the geometrical of active integration antennas to achieve efficient filtering and easy attenuation of unwanted harmonics. Further, an embedded empirical antenna with a high-order harmonic suppression has been suggested. This is followed by a “complementary opening recoiled construct cell”. The proposed approach was developed to control the antenna harmonics at center frequency of "\(2.4 \;{\text{GHz}}\)." The simulation sketches show that the reflection coefficient of multiple harmonics had an effective suppression up to 3.2 dB without any effect on the resonant frequency. The radiation patterns at high suppression levels of harmonics are within the range (13.92–15.2 dB) for both E-plane and H-plane. Further, the designed antenna bandwidth at the resonant frequency is \(\left( {85\;{\text{MHz}}} \right)\). Finally, the proposed antenna with \({\text{DGS}}\) had return losses and antenna gain of \(\left( { - 23.15 \;{\text{dB}};\;8.25\;{\text{dB}}} \right),\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

L :

Length

P H :

Patch height

P W :

Patch width

G H :

Ground patch height

h :

height

G W :

Ground patch width

S W :

Slot width

S H :

Slot height

W:

Width

S TH :

Slot thickness

f0 :

Resonant frequency

m & n :

Modes along L & W

η :

Radiation efficiency

C :

Light velocity

L eff :

Effective length

R in :

I/P resistance

h/λ 0 :

Substrate thickness

Z C :

Transmission line impedance

(εr):

dielectric constant

Q :

Antenna quality factor

Z 1 :

Quarter wavelength impedance

Q 0 :

Unloaded antenna quality factor

G 12 :

The admittance between slots

References

  1. Uzer, D.: Investigation on favourable methods for wideband microstrip patch antenna designs. PhD thesis, The Graduate School of Natural and Applied Science, Selcuk University, Konya, Turkey (2016)

  2. Sim, C.-Y.-D.; Chang, M.-H.; Chen, B.-Y.: Microstrip-fed ring slot antenna design with wideband harmonic suppression. IEEE Trans. Anten. Propag. 62(9), 4828–4832 (2014)

    Article  Google Scholar 

  3. Houda, W.; Chaoui, M.; Ghariani, H.; Lahiani, M.: Design of a pulse generator for UWB communications. In: 10th international multi-conferences on systems signals & devices (SSD13) (2013)

  4. Ren, Y.; Chang, K.: 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microw. Theory Tech. 54(4), 1495–1502 (2006)

    Article  Google Scholar 

  5. Liu, H.; Li, Z.; Sun, X.; Mao, J.: Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna. IEEE Microw. Compon. Lett. 15(2), 55–56 (2005)

    Article  Google Scholar 

  6. Ren, Y.; Chang, K.: 58-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microwave Theory Tech. 54(4), 1495–1502 (2006)

    Article  Google Scholar 

  7. Alam, A.H.M.Z.; Islam, Md. R.; Khan, S.: Design and analysis of UWB rectangular patch antenna. In: Pacific Conference on Applied Electromagnetiggs Proceedings, December 4–6, 2007, Malaysia

  8. Thirumala, G.; Siddaiah, P.: Wideband harmonic suppression using rectangular ring slot patch antenna. J. Eng. Technol. 180–182 (2017)

  9. Lee, Y. J.; Yeo, J.; Mittra, R.; Park, W.S.: Design of a frequency selective surface (FSS) type superstrate for dual-band directivity enhancement of microstrip patch antennas. In: IEEE antennas and propagation society international symposium, vol. 3, pp. 2–5. IEEE (2005)

  10. Sim, C.; Chang, M.; Chen, B.: Microstrip-fed ring slot antenna design with wideband harmonic suppression. IEEE Trans. Antennas Propag. 62(9), 4828–4832 (2014)

    Article  Google Scholar 

  11. Liu, Y.W.; Lu, Y.; Hsu, P.: Harmonic suppressed slot loop antenna fed by coplanar waveguide. IEEE Antennas Wirel. Propag. Lett. 13, 1292–1295 (2014)

    Article  Google Scholar 

  12. Biswas, S.; Ghosh, C.K.; Mandal, S.; Sarkar, G.A.; Banerjee, S.; Mandal, D.: Suppression of higher order modes of a two element microstrip array using open-ended stubs. Progress Electromagn. Res. Lett. 82, 121–128 (2019)

    Article  Google Scholar 

  13. Biswas, S.; Guha, D.; Kumar, C.: Control of higher harmonics and their radiations in microstrip antennas using compact defected ground structures. IEEE Trans. Antennas Propag. 61(6), 3349–3353 (2013)

    Article  Google Scholar 

  14. Shynu, S.V.; Ammann, M.J.; Norton, B.: A quarterwave metal plate solar antenna. IET Electron. Lett. 44(9), 570–571 (2008)

    Article  Google Scholar 

  15. Balanis, C.A.: Antenna theory: analysis and design. Wiley, Hoboken (2016)

    Google Scholar 

  16. Vaccaro, S.; Mosig, J.R.; de Maagt, P.: Making planar antennas out of solar cells. Electron. Lett. 38(17), 945–947 (2002)

    Article  Google Scholar 

  17. Pirhadi, A.; Bahrami, H.; Nasri, J.: Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Trans. Antennas Propag. 60(4), 2101–2106 (2012)

    Article  Google Scholar 

  18. Kim, O.: Minimum Q electrically small antennas. IEEE Trans. Antennas Propag. 60(8), 3551–3558 (2012)

    Article  MathSciNet  Google Scholar 

  19. Raviteja, G.V.: Design and analysis of a novel dual trapezoidal slot-based rectangular microstrip antenna for wide area network using wimax application. Microwave Opt. Technol. Lett. 60(4), 1057–1060 (2018)

    Article  Google Scholar 

  20. ANTENNATHEORY.COM. Bandwidth. http://www.antenna-theory.com/basics/bandwidth.php.15,6,17.

  21. Jonsson, B.L.G.; Shi, S.; Ferrero, F.; Lizzi, L.: On methods to determine bounds on the Q-factor for a given directivity. IEEE Trans. Antennas Propag. 65(11), 5686–5696 (2017)

    Article  MathSciNet  Google Scholar 

  22. Chuc, D.H.; Duong, B.G.: Design and fabrication of rectifying antenna circuit for wireless power transmission system operating at ISM band. Int. J. Electrical Comput. Eng. (IJECE). 6(4), 1522–1528 (2016)

    Article  Google Scholar 

  23. Zhang, B.H.; Zhang, J.W.; Wu, Z.P.; Liu, C.G.; Zhang, B.: A 2.45 GHz dielectric resonator rectenna for wireless power transmission. In: 2017 international conference of electronics, communication and aerospace technology (ICECA). Coimbatore, India. 20–22 April, 2017

  24. Ciuonzo, D.; Orlando, D.; Pallotta, L.: On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance. IEEE Signal Process. Lett. 23(12), 1830–1834 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere thanks and appreciation to the reviewers for their heedful reading of the research article and their constructive suggestions for the improvement and their contribution for succession of our proposed work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa K. Al-azzawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-azzawi, A. New Design Approach of a “2.4 GHz” Slotted Rectangular Patch Antenna with a Wideband Harmonic Suppression. Arab J Sci Eng 46, 9771–9781 (2021). https://doi.org/10.1007/s13369-021-05335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05335-x

Keywords

Navigation