Skip to main content
Log in

De-risking subsurface uncertainties in developing and managing deepwater turbidite gas assets through data analytics

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Subsurface uncertainties due to turbidite complexity will impact the recoverable resource and reservoir productivity which leads to decision making and planning of a deepwater field. This paper provides an alternative de-risking technique through data analytics approach in developing and managing deepwater turbidite gas assets based on global deepwater turbidite gas fields benchmarking and lessons learned. To collect data on turbidite fields, data mining was done to extract relevant key information on high-level field information, geological and reservoir properties, production, wells, facility, subsurface and operational challenges, and mitigation plan to manage such challenges from published literature data. All extracted contents were transformed to proper target database relational format for the clean-up process. Having established a turbidite field database, exploratory data analysis was then employed to discover insight the datasets. Furthermore, an analytic dashboard was developed to visualize the findings and perform analysis specifically on field benchmarking. Subsurface challenges, specifically as related to reservoir uncertainties and associated risks, including operational challenges in developing and managing deepwater turbidite gas fields were identified through word cloud recognition. Key subsurface challenges were then categorized and statistically ranked, finally, a decomposition tree was used to comprehensively identify the issues, hypotheses, impacts, and mitigation plan for dealing with identified risks based on best practices from a global project point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bouma, A.H.; Normark, W.R.; Barnes, N.E.: COMFAN: needs and initial results. In: Submarine fans and related turbidite systems, pp. 7–11. Springer, New York (1985)

    Chapter  Google Scholar 

  2. Stelting, C. E., Bouma, A. H., Stone, C. G.: AAPG Memoir 72/SEPM Special Publication No. 68, Chapter 1: Fine-Grained Turbidite Systems: Overview (2000)

  3. Cramez, C.: Turbidite deposits & HC exploration. Available at http://homepage.ufp.pt/biblioteca/Turbidite%20Depositional%20Systems/Pages/Page2.htm. Accessed March 2, 2020

  4. Chapin, M.A.; Davies, P.; Gibson, J.L.; Pettingill, H.S.; Weimer, P.: Reservoir architecture of turbidite sheet sandstones in laterally extensive outcrops, Ross Formation, western Ireland. Submar. Fans Turbid. Syst. 15, 53–68 (1994)

    Google Scholar 

  5. Slatt, R.M.: Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers. Elsevier, Netherlands (2006)

    Google Scholar 

  6. Dromgoole, P.; Bowman, M.; Leonard, A.; Weimer, P.; Slatt, R.M.: Developing and managing turbidite reservoirs–case histories and experiences: results of the 1998 EAGE/AAPG research conference. Pet. Geosci. 6(2), 97–105 (2000)

    Article  Google Scholar 

  7. Society of Petroleum Engineers.: Technical Report on Data Analytics in Reservoir Engineering Open for Comments. Available at https://pubs.spe.org/en/print-article/?art=6372 (2019). Accessed April 2, 2020

  8. Turra, C.: Introduction to data analytics. Available at https://hpc-forge.cineca.it/files/CoursesDev/public/2015//Data_Analysis_School/presentations/School%20SDAV%20Introduction%20to%20Data%20Analytics.pdf (2015). Accessed April 2, 2020

  9. Mohammadpoor, M.; Torabi, F.: Big data analytics in oil and gas industry: an emerging trend. Petroleum (2018). https://doi.org/10.1016/j.petlm

    Article  Google Scholar 

  10. Johnston, J.; Guichard, A.: New findings in drilling and wells using big data analytics. Offsh. Technol. Conf. (2015). https://doi.org/10.4043/26021-MS

    Article  Google Scholar 

  11. Alsalama, A.M.; Canlas, J.P.; Gharbi, S.H.: An integrated system for drilling real time data analytics. Soc. Petrol. Eng. (2016). https://doi.org/10.2118/181001-MS

    Article  Google Scholar 

  12. Lee, B.B.; Lake, L.W.: Using data analytics to analyze reservoir databases. Soc. Petrol. Eng. (2015). https://doi.org/10.2118/174900-MS

    Article  Google Scholar 

  13. Ettehadtavakkol, A.; Jamali, A.: A data analytic workflow to forecast produced water from Marcellus shale. J. Nat. Gas Sci. Eng. 61, 293–302 (2019)

    Article  Google Scholar 

  14. Formato, G.; Onzaca, C.; Molaro, S.; Amendola, A.: WIZARD: well infilling optimization thorugh regression and data analytics. Soc. Petrol. Eng. (2019). https://doi.org/10.2118/197293-MS

    Article  Google Scholar 

  15. Martin, A.J.; Robertson, D.; Wreford, J.; Lindsay, A.B.: High-accuracy oriented perforating extends sand-free production life of Andrew field. Soc. Petrol. Eng. (2005). https://doi.org/10.2118/93639-MS

    Article  Google Scholar 

  16. Stephenson, P.M.; Ainsworth, R.B.; Johnson, D.A.; Koninx, J.M.P.; Seggie, R.J.: Identifying, evaluating and modelling key dynamic parameters: sunrise troubadour gas condensate fields. Soc. Petrol. Eng. (2000). https://doi.org/10.2118/64483-MS

    Article  Google Scholar 

  17. Cadman, S., Temple, P.: Territory of Ashmore & Cartier Islands Adjacent Area (AC) Joint Petroleum Development Area (JPDA) (2004).

  18. Fugitt, D.S.; Florstedt, J.E.; Herricks, G.J.; Wise, M.R.; Stelting, C.E.; Schweller, W.J.: Production characteristics of sheet and channelized turbidite reservoirs, Garden Banks 191, Gulf of Mexico. Lead. Edge 19(4), 356–369 (2000)

    Article  Google Scholar 

  19. Lavering, I.H., Pain, L.: Australian Petroleum Accumulations Report 7 Browse Basin. Geoscience Australia. Australian Government Pub. Service (1991)

  20. Browse FLNG Project. Available at https://www.offshore-technology.com/projects/browse-flng-project/. Accessed March 2, 2020

  21. Glenton, P.N.; Sutton, J.T.; McPherson, J.G.; Fittall, M.E.; Moore, M.A.; Heavysege, R.G.; Box, D.: Hierarchical approach to facies and property distribution in a basin-floor fan model, Scarborough Gas Field, North West Shelf, Australia. Int. Petrol. Technol. Conf. (2013). https://doi.org/10.2523/IPTC-17037-Abstract

    Article  Google Scholar 

  22. Fraser, I.; Bruce, R.H.: Petroleum developments in Western Australia. Offsh. Technol. Conf. (1998). https://doi.org/10.4043/8906-MS

    Article  Google Scholar 

  23. Hansen, H.; Westvik, K.: Successful multidisciplinary teamwork increases income. Case study The Sleipner East Ty Field, South Viking Graben, North Sea. Soc. Petrol. Eng. (2000). https://doi.org/10.2118/65135-MS

    Article  Google Scholar 

  24. Eikeland, K.M.; Hansen, H.: Dry gas reinjection in a strong waterdrive gas-condensate field increases condensate recovery—case study: the Sleipner Øst Ty field, South Viking Graben, Norwegian North Sea. Soc. Petrol. Eng. (2009). https://doi.org/10.2118/110309-PA

    Article  Google Scholar 

  25. Strømmen, S. K., Halvorsen, C., Langlais, V., Laursen, G. V., Nadeau, P., Samuelsen, E. T.: Sleipner Øst Field, A Sand-Rich Palaeocene (Ty Formation) Gas-Condensate Reservoir Offshore Norway-Sedimentology, Stratigraphy, Heterogeneity and Paleocontact Influence on Reservoir Properties, Flow and Production. In EAGE/AAPG 3rd Research Symposium-Developing and Managing Turbidite Reservoirs (pp. cp-100). European Association of Geoscientists & Engineers (1998)

  26. SLEIPNER ØST. Available at https://www.norskpetroleum.no/en/facts/field/sleipner-ost/. Accessed March 2, 2020).

  27. Morrison, A.; Beinke, J.: Perforation and rig flowback highlights for the gorgon field development wells. Soc. Petrol. Eng. (2016). https://doi.org/10.2118/182420-MS

    Article  Google Scholar 

  28. Causebrook, R.: The Gorgon Project—a brief overview. Geoscience Australia. Available at http://www.ccop.or.th/ccsm/data/9/docs/RC_Gorgon.pdf (2010). Accessed March 2, 2020

  29. Nilsen, T. H., Shew, R. D., Steffens, G. S., Studlick, J. R. J.: Atlas of deep-water outcrops: AAPG Studies in Geology 56 (2007)

  30. Lucchesi, C.F.; Gontijo, J.E.: Deep water reservoir management: the Brazilian experience. Offsh. Technol. Conf. (1998). https://doi.org/10.4043/8881-MS

    Article  Google Scholar 

  31. Weimer, P.; Slatt, R.M.: Petroleum systems of deepwater settings. Soc. Explor. Geophys. Eur. Assoc. Geosci. Eng. (2004). https://doi.org/10.1190/1.9781560801955.fm

    Article  Google Scholar 

  32. Kendrick, J. W.: Turbidite Reservoir Architecture in the Northern Gulf of Mexico Deepwater: Insights from the Development of Auger, Tahoe, and Ram/Powell Fields (2000). doi: https://doi.org/10.5724/gcs.00.15.0450

  33. Clemenceau, G. R., Colbert, J., Edens, D.: Production results from levee-overbank turbidite sands at Ram/Powell field, deepwater Gulf of Mexico. In Deep-Water Reservoirs of the World, GCSSEPM Foundation 20th Annual Research Conference, pp. 241–251 (2000)

  34. Lerch, C.S.; Bramlett, K.W.; Butler, W.H.; Scales, J.N.; Stroud, T.B.; Glandt, C.A.: Integrated 3D reservoir-modeling at Ram-Powell field: a turbidite reservoir in the eastern Gulf of Mexico. Soc. Petrol. Eng. (1996). https://doi.org/10.2118/36729-MS

    Article  Google Scholar 

  35. McLaughlin, D.C.: Mensa project: an overview. Offsh. Technol. Conf. (1998). https://doi.org/10.4043/8576-MS

    Article  Google Scholar 

  36. Razi, M.; Bilinski, P.W.: Mensa field, deepwater Gulf of Mexico (GOM)—case study. Soc. Petrol. Eng. (2012). https://doi.org/10.2118/159741-MS

    Article  Google Scholar 

  37. McGee, D.T.: Geologic models and reservoir geometries of Auger Field, deepwater Gulf of Mexico. Houston Geol Soc Bullet 35(9), 7 (1993)

    Google Scholar 

  38. Romo, L.A.; Shaughnessy, J.M.; Lisle, E.T.: Challenges associated with subsalt tar in the Mad Dog Field. Soc. Petrol. Eng. (2007). https://doi.org/10.2118/110493-MS

    Article  Google Scholar 

  39. Duan, S.; Lach, J.R.; Beadall, K.K.; Li, X.: Water injection in deepwater, over-pressured turbidites in the Gulf of Mexico: past, present, and future. Offsh. Technol. Conf. (2013). https://doi.org/10.4043/24111-MS

    Article  Google Scholar 

  40. Government of Western Australia.: Western Australian Oil and Gas Review. Available at https://www.accc.gov.au/system/files/public-registers/documents/D10%2B3402415.pdf (2008). Accessed March 2, 2020

  41. Geoscience Australia. Summary Report Chrysaor 1. Available at http://dbforms.ga.gov.au/www/npm.well.summary_report?pEno=9865&pName=Chrysaor%201&pTimescale=A&pTotalDepth=3597&pDepthMax=3597&pDepthMin=0&pPeriod=&pStage=&pAgeMax=214&pAgeMin=0&pAgeTop=0&pAgeBase=214&pTotalAge=214&pPrinterV=Yes (Accessed March 2, 2020).

  42. Inikori, S.O.; Spring, L.Y.; Ageh, E.; Van der Bok, J.W.: The Development of world-class high rates, high ultimate recovery wells in deepwater turbidites-bonga field, Offshore Nigeria. Soc. Petrol. Eng. (2007). https://doi.org/10.2118/110360-MS

    Article  Google Scholar 

  43. Berg, E. A., Kjarnes, P. A.: Uncertainty, risk and decision management on the Ormen Lange gas field offshore Norway. In AAPG International Conference, Barcelona, Spain (2003)

  44. Gjelberg, J., Martinsen, O. J., Charnock, M., Møller, N., Antonsen, P.: The reservoir development of the Late Maastrichtian–Early Paleocene Ormen Lange gas field, Møre Basin, Mid-Norwegian Shelf. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, No. 1, pp. 1165–1184). Geological Society of London (2005)

  45. RØtjer, T.: The Ormen lange langeled development. Offsh. Technol. Conf. (2007). doi: https://doi.org/10.4043/18961-MS

  46. Lunde, G.G.; Vannes, K.; McClimans, O.T.; Burns, C.; Wittmeyer, K.: Advanced flow assurance system for the Ormen lange subsea gas development. Offsh. Technol. Conf. (2009). https://doi.org/10.4043/20084-MS

    Article  Google Scholar 

  47. Van Kranenburg, A.; Twycross, J.; Combe, C.; Hals, K.N.: Sand control completions for Ormen lange big bore high rate gas development, evaluation of concept selection, qualification, execution and well performance. Soc. Petrol. Eng. (2011). https://doi.org/10.2118/144089-MS

    Article  Google Scholar 

  48. ORMEN LANGE. Available at https://www.norskpetroleum.no/en/facts/field/ormen-lange/ (Accessed March 2, 2020).

  49. Dick, W.; Sharshar, A.E.R.: An overview of the development of the scarab/saffron project. Soc. Petrol. Eng. (2003). https://doi.org/10.2118/81582-MS

    Article  Google Scholar 

  50. Toubar, M.; Baydoun, M.; Baaha, H.; Iversen, M.: Egyptian deepwater development—a case study. Offsh. Technol. Conf. (2003). https://doi.org/10.4043/15308-MS

    Article  Google Scholar 

  51. Ellaithy, W.F.; Davis, H.; Gaber, M.; Helal, M.F.: The Scarab/Saffron fields development, subsea system. Offsh. Technol. Conf. (2004). https://doi.org/10.4043/16337-MS

    Article  Google Scholar 

  52. Bahaa, H.; Ragaee, E.: Sand control application in mediterranean sea pliocene gas reservoirs-case study. Offsh. Technol. Conf. (2006). https://doi.org/10.4043/17790-MS

    Article  Google Scholar 

  53. Mokhtar, M.; Saad, M.; Selim, S.: Reservoir architecture of deep marine slope channel, Scarab field, offshore Nile Delta, Egypt: application of reservoir characterization. Egypt. J. Pet. 25(4), 495–508 (2016)

    Article  Google Scholar 

  54. Mohamed, I.A.; Hosny, A.; Mohamed, A.A.: High-resolution three-dimensional water saturation prediction—a case study from Offshore Nile Delta. Interpretation 3(2), T57–T68 (2018)

    Article  Google Scholar 

  55. El-Mowafy, H.Z.; Ibrahim, M.; Dunlap, D.B.: Unlocking gas reserves in bypassed stratigraphic traps in a deepwater brownfield using prestack seismic inversion: a case study from offshore Nile Delta, Egypt. Lead. Edge 37(7), 502–509 (2018)

    Article  Google Scholar 

  56. Korn, B.E.; Teakle, R.P.; Maughan, D.M.; Siffleet, P.B.: The Geryon, Orthrus, Maenad and Urania gas fields, Carnarvon Basin, Western Australia. APPEA J. 43(1), 285–301 (2003)

    Article  Google Scholar 

  57. Richardson, G., Nixon, L. D., & Bohannon, C. M.: Deepwater Gulf of Mexico 2008: America’s Offshore Energy Future. US department of the Interior Minerals Management Service (MMS) Gulf of Mexico OCS Region (2008)

  58. Zhang, G.; Qu, H.; Chen, G.; Zhao, C.; Zhang, F.; Yang, H.; Zhao, Z.; Ma, M.: Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration. J. Nat. Gas Geosci. 4(1), 1–28 (2019)

    Article  Google Scholar 

  59. Jenkins, C.C.; Maughan, D.M.; Acton, J.H.; Duckett, A.; Korn, B.E.; Teakle, R.P.: The Jansz Gas Field, Carnarvon Basin, Australia. APPEA J. 43(1), 303–324 (2003)

    Article  Google Scholar 

  60. Jenkins, C.C.; Chiquito, R.M.; Glenton, P.N.; Mills, A.A.; McPherson, J.; Schapper, M.C.; Williams, M.A.: Reservoir definition at the Jansz/Io gas field, NW shelf, Australia: a case study of an integrated project from exploration to development. Int. Petrol. Technol. Conf. (2008). https://doi.org/10.2523/IPTC-12461-MS

    Article  Google Scholar 

  61. Reeves, D.F.; Healy, J.C.: One tcf from one well: the design of a 500 mmscf/d subsea well for offshore mega gas fields. Soc. Petrol. Eng. (2014). https://doi.org/10.2118/168118-MS

    Article  Google Scholar 

  62. Ly, K.; Das, S.; Pudin, V.; Kazanov, D.; Affinito, R.J.: High-value data at zero cost: pulse and interference testing in a deepwater gas field under LNG plant start-up constraints. Soc. Petrol. Eng. (2016). https://doi.org/10.2118/182443-MS

    Article  Google Scholar 

  63. Affinito, R.; Boxall, J.; Clough, J.; Coletta, A.; Frontczak, J.; Morrison, A.; Pradhan, V.; Robinson, W.: Overview of Jansz-Io field, upstream gorgon project start-up results and integrated tabletop planning process. Soc. Petrol. Eng. (2016). https://doi.org/10.2118/182488-MS

    Article  Google Scholar 

  64. Jenkins, C. C., Duckett, A., Boyett, B. A., Glenton, P. N., Mills, A. A., Schapper, M. C., Williams, M.A., McPherson, J. G.: The Jansz-Io Gas Field, Northwest Shelf Australia: A Giant Stratigraphic Trap (2017)

  65. Rafin, F.; Allain, L.; Ludot, B.: AKPO: a giant deep offshore development. Soc. Petrol. Eng. (2008). https://doi.org/10.2118/118892-PA

    Article  Google Scholar 

  66. Bandele, V.A.; Claudel, G.: Leading edge subsurface technologies for Akpo—a complex condensate field. Offsh. Technol. Conf. (2010). https://doi.org/10.4043/20990-MS

    Article  Google Scholar 

  67. Adeyemi, A.; Uwerikowe, G.; Tyagi, T.; Oukmal, J.; Usman, M.: Complex reservoir re-development in a deep offshore maturing field: Akpo field case study. Soc. Petrol. Eng. (2019). https://doi.org/10.2118/198747-MS

    Article  Google Scholar 

  68. Oukmal, J.; Biu, V.; Usman, M.: Key success factors and challenges of gas injection in a deep offshore turbidite environment—deepwater Akpo field example. Soc. Petrol. Eng. (2019). https://doi.org/10.2118/198837-MS

    Article  Google Scholar 

  69. Geoscience Australia.: Summary Report Callirhoe 1. Available at http://dbforms.ga.gov.au/www/npm.well.summary_report?pName=Callirhoe%20%201&pEno=9604&pTimescale=A&pDepthMax=4128&pDepthMin=0&pPeriod=&pStage=&pAgeMax=214&pAgeMin=0&pAgeTop=0&pAgeBase=3000&pTotalAge=214 (Accessed March 2, 2020).

  70. Hall, J.D.; Bullard, D.B.; Gray, W.M.; Drew, M.C.: Falcon corridor: infrastructure with future marginal fields in mind. Offsh. Technol. Conf. (2004). https://doi.org/10.4043/16527-MS

    Article  Google Scholar 

  71. Hoffman, J.S.; Kaluza, M.J.; Griffiths, R.; McCullough, G.; Hall, J.; Nguyen, T.: Addressing the challenges in the placement of seafloor infrastructure on the east breaks slide—a case study: the falcon field (EB 579/623), Northwestern Gulf of Mexico. Offsh. Technol. Conf. (2004). https://doi.org/10.4043/16748-MS

    Article  Google Scholar 

  72. Redhead, R. B., Lumadyo, E., Saller, A., Noah, J. T., Brown, T. J., Yusri, Y., Weimer, P.: West Seno field discovery, Makassar Straits, East Kalimantan, Indonesia. In Deep-water reservoirs of the world: SEPM Gulf Coast Section 20th Annual Research Conference, Vol. 862 (2000)

  73. MacArthur, J.; Inaray, J.; Setiawan, Y.; Terry, A.; Palar, S.; Darmono, S.: West Seno field development: the first deepwater field in Indonesia. Soc. Petrol. Eng. (2001). https://doi.org/10.2118/68760-MS

    Article  Google Scholar 

  74. Chudanov, D.A.; Terry, A.; Partono, Y.; Inaray, J.: Field overview of west Seno. Offsh. Technol. Conf. (2004). https://doi.org/10.4043/16520-MS

    Article  Google Scholar 

  75. Gallup, D.L.; Smith, P.C.; Star, J.F.; Hamilton, S.: West Seno deepwater development case history—production chemistry. Soc. Petrol. Eng. (2005). https://doi.org/10.2118/92969-MS

    Article  Google Scholar 

  76. Durkee, E. F.: Oil, geology, and changing concepts in the Southwest Philippines (Palawan and the Sulu Sea) (1993)

  77. Greer, D.J.: Malampaya deep water gas to power project—an overview—powering the philippines into the new millennium. Offsh. Technol. Conf. (2002). https://doi.org/10.4043/14038-MS

    Article  Google Scholar 

  78. Seaver, J.: Malampaya deep water gas-to-power project: Malampaya subsea development. Offsh. Technol. Conf. (2002). https://doi.org/10.4043/14041-MS

    Article  Google Scholar 

  79. Rao, N.: Propellant Perforation for a Depleted Carbonate Subsea Gas Well—Malampaya. Available at http://www.perforators.org/wp-content/uploads/2015/10/19-menaps-13-19-propellant-assisted-perforation-malampaya-n-rao.pdf (2013). Accessed March 3, 2020

  80. Kulkarni, P.: India’s first deepwater offshore field showcases ingenuity. Soc. Petrol. Eng. (2010). https://doi.org/10.2118/0210-0030-JPT

    Article  Google Scholar 

  81. Chakhmakhchev, A., Rushworth, P.: Global Overview of Recent Exploration Investment in Deepwater-New Discoveries, Plays and Exploration Potential. In Adapted from oral presentation at AAPG Convention, September 12–15, 2010, Calgary, Alberta, Canada (2010)

  82. Rama Rao, A.; Srinivasa Rao, S.; Sharma, T.; Rama Krishna, K.: Asset integrity management in onshore & offshore-enhancing reliability at KGD6. Soc. Petrol. Eng. (2012). https://doi.org/10.2118/153510-MS

    Article  Google Scholar 

  83. Gupta, G.; Singh, S.K.: Hydrate inhibition—optimization in deep water gas field. Soc. Petrol. Eng. (2012). https://doi.org/10.2118/153504-MS

    Article  Google Scholar 

  84. Shahruddin, T.S.; Jenkins, R.W.; McFadyen, M.K.; Dechant, S.; Weber, J.D.: Kikeh development: project overview. Offsh. Technol. Conf. (2008). https://doi.org/10.4043/19481-MS

    Article  Google Scholar 

  85. Terry, A.J.; Chan, C.S.; Dixon, D.R.; Gard, F.; McFadyen, M.K.: Kikeh development: challenges in implementing a smart field. Offsh. Technol. Conf. (2008). https://doi.org/10.4043/19469-MS

    Article  Google Scholar 

  86. Masoudi, R.; Karkooti, H.; Chan, K.S.; Othman, M.B.; Burford, S.; Sarginson, M.; Chenery, D.: Malaysia deepwater development: optimizing Kikeh reservoir management and exploitation in a changing environment. Int. Petrol. Technol. Conf. (2014). https://doi.org/10.2523/IPTC-17694-MS

    Article  Google Scholar 

  87. ANP - National Agency of Petroleum, Natural Gas and Biofuels.: Oil and Gas Opportunities in Brazil: 2017 - 2019 Bidding Rounds. Available at https://investexportbrasil.dpr.gov.br/Arquivos/Publicacoes/OportunidadesInvestimentos/Livreto-ANP-Oil_and_Gas_Opportunities_in_Brazil.pdf (2017). Accessed March 3, 2020

  88. Jennings, J.C.; Triolo, D.K.; Mosness, T.L.; Rezende, J.: Liwan gas project: first South China sea deepwater completions campaign. Offsh. Technol. Conf. (2013). https://doi.org/10.4043/23934-MS

    Article  Google Scholar 

  89. Denney, D.: Liwan gas project: South China sea deepwater case study. Soc. Petrol. Eng. (2013). https://doi.org/10.2118/0513-0094-JPT

    Article  Google Scholar 

  90. Fu, Y.; Gong, W.; Li, L.; Su, R.; Wei, F.: Liwan field development: the first deepwater gas field in China. Offsh. Technol. Conf. (2016). https://doi.org/10.4043/26447-MS

    Article  Google Scholar 

  91. Kurniawan, D.; Cook, D.C.; Majesta, C.; September, B.; Buldani, I.; Ciuffardi, M.; Prasetia, F.: Deep water reservoir characterization and its challenges in field development drilling campaign, Kutei Basin, Indonesia—a case study. Soc. Petrol. Eng. (2015). https://doi.org/10.2118/176481-MS

    Article  Google Scholar 

  92. Pradja, K.; Cook, D.; Budi, I.; Kurniawan, D.; Beretta, E.: Capturing the reservoir uncertainty by optimizing gas well clean-up design in deep water channel slope environment, Kutei Basin, Indonesia—a case study. Soc. Petrol. Eng. (2015). https://doi.org/10.2118/176496-MS

    Article  Google Scholar 

  93. Jangkrik. Available at https://www.eni.com/en-IT/operations/indonesia-jangkrik.html (Accessed March 3, 2020).

  94. SKK Migas Annual Report 2017. Available at https://www.skkmigas.go.id/assets/Annual%20Report/5c377649207b37cfcf09305dbda82704.pdf?__cf_chl_jschl_tk__=4441bfa2cc9dbaa6e2209597bfcef17c2fcf477a-1591690581-0-AXEmOc80u0KFWaDOi1vaTIgjI1Pohqux6v_CIoAQNGdX3raCMPWjROzF245JMhtbktxZk3COVZztDtMlWomkbKCs810OnwoM4tfGcecwbiNQCOVc4k92aE9Mq6j6HSVcXXD8EsxapsNslUvRD2iv0CqXIN-Ojp23-gNsxiHw45OiYm3fPul2Ct6bsYStwafZ_JVAaZKmn_rEscR16RdhXcJPBVAm5gu4SXi62I2yQIXSkGbuQRRG61RC4PUFUVk50RLfr7rQq2bkyHsLepxGzy8mD0EOpCvOwgRbH-iFxNgSHPXZrAkwuhcogLZ9HTLZKNJW8mqA-B2HGP55qo8huW2aP5CXbIzGh6ZaI6L0eJ8M (Accessed March 3, 2020).

  95. Meciani, L., Orsi, M.: Creative Exploration in a Mature Basin: Jangkrik and Merakes Discoveries (Kutei Basin, Indonesia) (2019)

  96. Christensen, C. J., Powers, G.: Formation evaluation challenges in Tamar Field, Offshore Israel. Society of Petrophysicists and Well-Log Analysts (2013)

  97. Offshore Levant Basin Petroleum System and HC resource assessment. Available at http://www.energy-sea.gov.il/English-Site/Pages/News%20And%20Media/Highlights%20of%20%20Basin%20Analysis%20of%20the%20Levantine%20Basin%20Offshore%20%E2%80%93%20Extracted%20from%20%20BeiCip%20FranLab%20Final%20Report%20(2015).pdf (Accessed March 3, 2020).

  98. CSA Ocean Sciences Inc.: Leviathan Field Development. Available at https://www3.opic.gov/Environment/EIA/nobleenergy/ESIA/DrillingEIA/Lev_Field_EBS_Final.pdf (2016). Accessed March 3, 2020

  99. Advisory, S. P. T. E. C.: Mozambique–the emergence of a giant in natural gas. 2012 Country Review. Retrieved, 14, 14 (2013)

  100. Ohaeri, C.U.; Sankaran, S.; Fernandez, J.J.: Evaluation of reservoir connectivity and hydrocarbon resource size in a deep water gas field using multi-well interference tests. Soc. Petrol. Eng. (2014). https://doi.org/10.2118/170829-MS

    Article  Google Scholar 

  101. Zhang, G., Wen, Z., Wang, Z., Song, C., Liu, X.: Passive continental margin basin evolution and giant gas discoveries in offshore east Africa. In International Conference and Exhibition (2014)

  102. INP.: Overview of the Petroleum Sector in Mozambique. Available at http://www.internationalpavilion.com/APPEX2019/APPEX_2019_Mozambique_INP.pdf (2019). Accessed March 4, 2020

  103. Haugen, E.; Solymar, S.; Pannetier-Lescoffit, S.; Reksten, K.; Lund, I.W.; Mrsic, Z.: Development of a large deep-water gas field in Tanzania: subsurface challenges and solutions in a frontier area. Soc. Petrol. Eng. (2018). https://doi.org/10.2118/191763-MS

    Article  Google Scholar 

  104. Baseline Assumptions of the 2019 Tanzania Natural Gas Model. Available at https://resourcegovernance.org/sites/default/files/documents/annex-baseline-assumptions-of-the-2019-tanzania-natural-gas-model.pdf. Accessed March 4, 2020

  105. Tanzania Block 2. Available at https://www.equinor.com/content/dam/statoil/documents/where-we-are/equinor-block-2-project-121018.pdf. Accessed March 4, 2020

  106. Palermo, D.; Galbiati, M.; Famiglietti, M.; Marchesini, M.; Mezzapesa, D.; Fonnesu, F.: Insights into a new super-giant gas field—sedimentology and reservoir modeling of the Coral Reservoir Complex, Offshore Northern mazambique. Offsh. Technol. Conf. (2014). https://doi.org/10.4043/24907-MS

    Article  Google Scholar 

  107. Rovuma offshore, Area 4. Available at http://www.inp.gov.mz/en/Exploration-Production/Current-Areas-of-Exploration-and-Production/Rovuma-Offshore-Area-4. Accessed March 4, 2020

  108. Malaysia: Natural Gas Industry Annual Review 2012. Available at https://malaysiangas.com/wp-content/uploads/2019/03/Natural_Gas_Industry_Review-2013.pdf. Accessed March 4, 2020

  109. CA2 (Kelidang Cluster). Available at https://www.woodmac.com/reports/upstream-oil-and-gas-ca2-kelidang-cluster-lng-67869264. Accessed March 4, 2020

  110. Omar, M.M.; Rasli, M.F.; Paimin, M.R.; Maulana, H.; Ghosh, A.; Abidin, M.Z.S.B.Z.: Overcoming challenges in pore pressure prediction and wellbore stability in Brunei ultra deepwater exploration well campaign. Soc. Petrol. Eng. (2016). https://doi.org/10.2118/182432-MS

    Article  Google Scholar 

  111. Ghafar, N. A., Rudiana, C. W., Saad, S. C. A., Ismail, M. H., & Ismail, M. M.: 3D seismic interpretation and mapping of the upper miocene–lower pliocene kelidang fan, deep water offshore brunei: a new play illuminated through integration of seismic attribute and geology. In APGCE 2019 (Vol. 2019, No. 1, pp. 1–3). European Association of Geoscientists & Engineers (2019)

  112. Eni successfully appraises Merakes discovery offshore Kalimantan, Indonesia. Available at https://www.eni.com/assets/documents/press-release/migrated/2017/01/PR_Merakes.pdf. Accessed March 4, 2020

  113. Merakes Gas Field, East Kalimantan. Available at https://www.offshore-technology.com/projects/merakes-gas-field-east-kalimantan/. Accessed March 4, 2020

  114. Kosmos Energy.: Mauritania Exploration Update. Available at http://www.kosmosenergy.com/pdfs/Tortue-Earnings-Update.pdf (2015). Accessed March 4, 2020

  115. BP.: BP announces Final Investment Decision for Phase 1 of the Greater Tortue Ahmeyim LNG Development. Available at https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/news-and-insights/press-releases/bp-announces-final-investment-decision-for-phase-1-of-the-greater-tortue-ahmeyim-lng-development.pdf (2018). Accessed March 4, 2020

  116. Greater Tortue Ahmeyim LNG Project. Available at https://www.nsenergybusiness.com/projects/greater-tortue-ahmeyim-lng-project/. Accessed March 4, 2020

  117. Vu, H.S.; Guerra, M.D.; Berry, P.A.: The planning and execution of the tortue high rate gas well DST in offshore deep water Mauritania. Offsh. Technol. Conf. (2018). https://doi.org/10.4043/29063-MS

    Article  Google Scholar 

  118. Sugisaki, R.: Deep-seated gas emission induced by the earth tide: a basic observation for geochemical earthquake prediction. Science 212(4500), 1264–1266 (1981)

    Article  Google Scholar 

  119. Pang, X.Q.; Jia, C.Z.; Wang, W.Y.: Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Pet. Sci. 12(1), 1–53 (2015)

    Article  Google Scholar 

  120. Smith, C.R.; Tracy, G.W.; Farrar, R.L.: Applied Reservoir Engineering, Vol. 1. Oil & Gas Consultants Int. Inc., Tulsa (1992)

    Google Scholar 

  121. Ahmed, T.: Reservoir engineering handbook. Gulf professional publishing (2018)

  122. Koteeswaran, M.: CO2 and H2S corrosion in oil pipelines. Master's thesis, University of Stavanger, Norway (2010)

  123. Pratama, E.; Suhaili Ismail, M.; Ridha, S.: An integrated workflow to characterize and evaluate low resistivity pay and its phenomenon in a sandstone reservoir. J. Geophys. Eng. 14(3), 513–519 (2017). https://doi.org/10.1088/1742-2140/aa5efb

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the management of AEM Energy Solutions for giving permission to publish this paper and their support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edo Pratama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratama, E. De-risking subsurface uncertainties in developing and managing deepwater turbidite gas assets through data analytics. Arab J Sci Eng 47, 11021–11037 (2022). https://doi.org/10.1007/s13369-021-05590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05590-y

Keywords

Navigation