Skip to main content
Log in

Determination of the Number of Photons Absorbed in SiO2/W/FeSb2/W Detection Pixel of Thermoelectric Single-Photon Detector

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The results of modeling heat propagation processes in the four-layer SiO2/W/FeSb2/W detection pixel of thermoelectric single-photon detector after absorbing more than one IR photon are presented. The calculations were carried out by a three-dimensional matrix method for partial differential equations. The cases of both simultaneous absorption of several photons on a 1-μm segment of the absorber surface and the absorption of photons following with a certain time delay are investigated. It is shown that the decay time of the detector signal to the background value substantially depends on the number of simultaneously absorbed photons. Using this parameter, you can determine the number of absorbed photons up to eight. The SiO2/W/FeSb2/W detection pixel can also register photons following with a time delay of 5 fs, which corresponds to a counting rate of 2 × 1014 Hz. A detector with such characteristics is in demand in many areas of modern technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chunnilall, C.J., Degiovanni, I.P., Kuck, S., Muller, I., and Sinclair, A.G., Opt. Eng., 2014, vol. 53, p. 081910.

    Article  ADS  Google Scholar 

  2. Eisaman, M.D., Fan, J., Migdall, A., and Polyakov, S.V., Rev. Sci. Instrum., 2011, vol. 82, p. 071101.

    Article  ADS  Google Scholar 

  3. Hadfield, R.H., Nat. Photonics, 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  4. Gol’tsman, G.N., Okunev, O., Chulkova, G., et al., Appl. Phys. Lett., 2001, vol. 79, no. 6, p. 705.

    Article  ADS  Google Scholar 

  5. Parlato, L., Salvoni, D., Ejrnaes, M., et al., J Low Temp Phys., 2020, vol. 199, p. 6.

    Article  ADS  Google Scholar 

  6. Van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Meth. Phys. Res. A, 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  7. Kuzanyan, A.A., Kuzanyan, A.S., Nikoghosyan, V.R., Gurin, V.N., and Volkov, M.P., J. Contemp. Phys., 2016, vol. 51, p. 181.

    Article  Google Scholar 

  8. Kuzanyan, A.A., Petrosyan, V.A., and Kuzanyan, A.S., J. Phys. Conf. Ser., 2012, vol. 350, p. 012028.

    Article  Google Scholar 

  9. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., Pros. SPIE, 2015, vol. 9504, p. 95040O-1.

    Article  ADS  Google Scholar 

  10. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys., 2018, vol. 53, p. 338.

    Article  Google Scholar 

  11. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys., 2019, vol. 54, p. 175.

    Article  Google Scholar 

  12. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens. J., 2020, vol. 20, no. 6, p. 3040.

    Article  ADS  Google Scholar 

  13. Kuzanyan, A.A., J. Contemp. Phys., 2016, vol. 51, p. 360.

    Article  Google Scholar 

  14. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys., 2018, vol. 53, p. 242.

    Article  Google Scholar 

  15. Kuzanyan, A.S., Kuzanyan, A.A., Gurin, V.N., Volkov, M.P., and Nikoghosyan, V.R., Semiconductors J., 2019, vol. 53, no. 5, p. 682.

    Article  ADS  Google Scholar 

  16. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys., 2017, vol. 52, p. 249.

    Article  Google Scholar 

  17. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys., 2018, vol. 53, p. 73.

    Article  Google Scholar 

  18. Kuzanyan, A.A., Kuzanyan, A.S., Badalyan, G.R., et al., Semiconductors J., 2017, vol. 51, no. 8, p. 999.

    Article  ADS  Google Scholar 

  19. Kuzanyan, A.A., Kuzanyan, A.S., Petrosyan, S.I., et al., J. Contemp. Phys., 2020, vol. 55, p. 164.

    Article  Google Scholar 

  20. Kuzanyan, A.A., Petrosyan, S.I., Kuzanyan, A.S., and Badalyan, G.R., J. Contemp. Phys., 2020, vol. 55, p. 364.

    Google Scholar 

  21. Petrosyan, S.I., Kuzanyan, A.A., Badalyan, G.R., and Kuzanyan, A.S., J. Contemp. Phys., 2018, vol. 53, p. 157.

    Article  Google Scholar 

  22. Kuzanyan, A.S., Petrosyan, V.A., Pilosyan, S.Kh., and Nesterov V.M. Quantum Electron., 41 (3), 253 (2011).

    Article  ADS  Google Scholar 

  23. Kuzanyan, A.S. and Kuzanyan, A.A., Pulsed Laser Deposition of Large-Area Thin Films and Coatings, chapter in the book “Applications of Laser Ablation – Thin Film Deposition, Nanomaterial Synthesis and Surface Modification”, edited by D. Yang, INTECH, 2016, p. 149–173.

    Google Scholar 

  24. Tang, Y.-L., Yin, H.-L., Chen, S.-J., Liu, Y., et al., Phys. Rev. Lett., 2014, vol. 113, p. 190 501.

    Article  Google Scholar 

  25. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., and Milburn, G.J., Rev. Mod. Phys., 2007, vol. 79, p. 135.

    Article  ADS  Google Scholar 

  26. Giovannetti, V., Lloyd, S., and Maccone, L., Nat. Photonics, 2011, vol. 5, p. 222.

    Article  ADS  Google Scholar 

  27. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., et al., Science, 2013, vol. 339, p. 794.

    Article  ADS  Google Scholar 

  28. Kardynal, B.E., Hees, S.S., Shields, A.J., Nicoll, C., Farrer, I., and Ritchie, D.A., Appl. Phys. Lett., 2007, vol. 90, p. 181 114.

    Article  Google Scholar 

  29. Rosenberg, D., Lita, A.E., Miller, A.J., and Nam, S.W., Phys. Rev. A, 2005, vol. 71, p. 1.

    Article  Google Scholar 

  30. Zambra, G., Bondani, M., Spinelli, S.A., Paleari, F., and Andreoni, A., Rev. Sci. Instrum., 2004, vol. 75, p. 2762.

    Article  ADS  Google Scholar 

  31. Waks, E., Diamanti, E., Sanders, C.B., Bartlett, D.S., and Yamamoto, Y., Phys. Rev. Lett., 2004, vol. 92, p. 113 602.

    Article  Google Scholar 

  32. Jiang, L.A., Dauler, E.A., and Chang, J.T., Phys. Rev. A, 2007, vol. 75, p. 62 325.

    Article  Google Scholar 

  33. Fitch, M.J., Jacobs, B.C., Pittman, T.B., and Franson, J.D., Phys. Rev. A, 2003, vol. 68, p. 043 814.

    Article  Google Scholar 

  34. Divochiy, A., Marsili, F., Bitauld, D., et al., Nat. Photonics, 2008, vol. 2, p. 302.

    Article  Google Scholar 

  35. Cahall, C., Nicolich, K.L., Islam, N.T., Lafyatis, G.P., et al., Optica, 2017, vol. 4, no. 12, 1534.

    Article  ADS  Google Scholar 

  36. Zou, K., Meng, Y., Wang, Z., and Hu, X., Photonics Res., 2020, vol. 8, no. 4, p. 601.

    Article  Google Scholar 

  37. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., Pros. SPIE, 2019, vol. 11027, p. 110270K-1.

    Google Scholar 

  38. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens. J., 2020, vol. 20, no. 21, p. 12 776.

    Article  Google Scholar 

  39. Kuzanyan, A.A., Semiconductors J., In press.

  40. Kozorezov, A.G., Lambert, C., Marsili, F., Stevens, M.J., et al., Phys. Rev. B, 2017, vol. 96, p. 054 507.

    Article  Google Scholar 

  41. Carini, G.Jr., Carini, G., Cosio, D., D’Angelo, G., and Rossi, F., Philos. Mag., 2016, vol. 96, p. 761.

    Article  ADS  Google Scholar 

  42. https://nanoheat.stanford.edu/sites/default/files/publications/A33.pdf.

  43. Figueira, M.S., Silva-Valencia, J., and Franco, R., Eur. Phys. J. B, 2012, vol. 85, no. 6, p. 203.

    Article  ADS  Google Scholar 

  44. Bentien, A., Johnsen, S., Madsen, G.K.H., Iversen, B.B., and Steglich, F., Europhys. Let., 2007, vol. 80, no. 1, p. 17 008.

    Article  Google Scholar 

  45. Waite, T.R., Craig, R.S., and Wallace, W.E., Phys. Rev., 1956, vol. 104, no. 5, p. 1240.

    Article  ADS  Google Scholar 

  46. http://www.efunda.com/materials/elements/TC_Table.cfm?Elment_ID=W.

  47. Furukawa, G.T., Douglas, T.B., McCoskey, R.E., and Ginnings, D.C., J. Res. Natl. Bur. Stand., 1956, vol. 57, no. 2, p. 67.

    Article  Google Scholar 

  48. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf.

Download references

ACKNOWLEDGMENTS

The author is grateful to A.M. Gulian, A.S. Kuzanyan and V.R. Nikoghosyan, for their interest in this work and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuzanyan.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A. Determination of the Number of Photons Absorbed in SiO2/W/FeSb2/W Detection Pixel of Thermoelectric Single-Photon Detector. J. Contemp. Phys. 56, 30–37 (2021). https://doi.org/10.3103/S1068337221010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221010102

Keywords:

Navigation